如圖,拋物線C1與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,3),點D為拋物線C1的頂點.
(1)求拋物線C1的表達(dá)式及點D坐標(biāo);
(2)將拋物線C1關(guān)于點B對稱后的拋物線記為C2.點P是x軸上一點,請問在C2上是否存在一點Q,使以B,C,P,Q為頂點的四邊形是以BC為邊的平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
?
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2-2x+3,頂點D(-1,4);
(2)點Q的坐標(biāo)為(3+,3)或(3-,3)或(4,-3).
(2)點Q的坐標(biāo)為(3+
7
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:536引用:1難度:0.3
相似題
-
1.如圖,拋物線y=
x2-2x-6與x軸相交于點A、點B,與y軸相交于點C.12
(1)請直接寫出點A,B,C的坐標(biāo);
(2)若點P是拋物線BC段上的一點,當(dāng)△PBC的面積最大時求出點P的坐標(biāo),并求出△PBC面積的最大值;
(3)點F是拋物線上的動點,作FE∥AC交x軸于點E,是否存在點F,使得以A、C、E、F為頂點的四邊形是平行四邊形?若存在,請寫出所有符合條件的點F的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/6/6 2:30:2組卷:615引用:5難度:0.1 -
2.如圖,拋物線y=x2-4x+3的圖象與坐標(biāo)軸交于A、B、C三點,
(1)求A、B兩點坐標(biāo);
(2)如圖1,若拋物線的頂點為E,求△ABC與△ABE的面積之和;
(3)在拋物線上是否存在點P,使得∠ACB=∠PAB,若存在,求出點P坐標(biāo),若不存在,請說明理由.發(fā)布:2025/6/6 5:0:1組卷:294引用:3難度:0.3 -
3.如圖,在平面直角坐標(biāo)系中,拋物線
與直線AB交于點A(0,-3),B(4,0).y=34x2+bx+c
(1)求拋物線的函數(shù)解析式;
(2)點P是直線AB下方拋物線上一點,過點P作y軸的平行線,交AB于點E,過點P作AB的垂線,垂足為點F,求△PEF周長的最大值及此時點P的坐標(biāo);
(3)在(2)中△PEF取得最大值的條件下,將該拋物線沿水平方向向左平移3個單位,點Q為點P的對應(yīng)點,點N為原拋物線對稱軸上一點.在平移后拋物線上確定一點M,使得以點B,Q,M,N為頂點的四邊形是平行四邊形,寫出所有符合條件的點M的坐標(biāo),并寫出求解點M的坐標(biāo)的其中一種情況的過程.發(fā)布:2025/6/6 1:30:1組卷:517引用:5難度:0.1
相關(guān)試卷