如圖已知二次函數(shù)y=x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,-1),點C(0,-4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交二次函數(shù)y=x2+bx+c的圖象于點B,連接BC.

(1)求該二次函數(shù)的表達式及點M的坐標:
(2)若將該二次函數(shù)圖象向上平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)若E為y軸上且位于點C下方的一點,P為直線AC上一點,在第四象限的拋物線上是否存在一點Q,使以C、E、P、Q為頂點的四邊形是菱形?若存在,請求出點Q的橫坐標:若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-4,M(1,-5);
(2)2<m<4;
(3)存在,1或3-.
(2)2<m<4;
(3)存在,1或3-
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:462引用:2難度:0.3
相似題
-
1.已知:拋物線C1:y=-(x+m)2+m2(m>0),拋物線C2:y=(x-n)2+n2(n>0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1:y=-(x+1)2+1與拋物線C2:y=(x-
)2+2是派對拋物線,已知派對拋物線C1,C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2于C,拋物線C2的對稱軸交拋物線C1與D.2
(1)已知拋物線①y=-x2-2x,②y=(x-3)2+3,③y=(x-)2+2,④y=x2-x+2,則拋物線①②③④中互為派對拋物線的是(請在橫線上填寫拋物線的數(shù)字序號);12
(2)如圖1,當m=1,n=2時,證明AC=BD;
(3)如圖2,連接AB,CD交于點F,延長BA交x軸的負半軸于點E,記BD交x軸于G,CD交x軸于點H,∠BEO=∠BDC.
①求證:四邊形ACBD是菱形;
②若已知拋物線C2:y=(x-2)2+4,請求出m的值.發(fā)布:2025/5/23 9:0:2組卷:765引用:6難度:0.3 -
2.如圖,拋物線
與x軸相交于點A(4,0),與y軸相交于點B(0,2).y=-14x2+bx+c
(1)求拋物線的表達式.
(2)D為線段AB上一點(不與點A,B重合),過點D作DE⊥x軸于點E,交拋物線于點F,若DE=DF,求點D的坐標.
(3)P是第四象限內(nèi)拋物線上一點,已知∠PBA=∠BAO,則點P的坐標為 .發(fā)布:2025/5/23 9:0:2組卷:398引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+bx+c的圖象與x軸交于A(-2,0)、B(5,0)兩點,過點C(2,4).動點D從點A出發(fā),以每秒1個單位長度的速度沿AB方向運動,設運動的時間為t秒.
(1)求拋物線y=ax2+bx+c的表達式;
(2)過D作DE⊥AB交AC于點E,連接BE.當t=3時,求△BCE的面積;
(3)如圖2,點F(4,2)在拋物線上.當t=5時,連接AF,CF,CD,在拋物線上是否存在點P,使得∠ACP=∠DCF?若存在,直接寫出此時直線CP與x軸的交點Q的坐標,若不存在,請簡要說明理由.?
發(fā)布:2025/5/23 9:0:2組卷:299引用:3難度:0.4
相關(guān)試卷