孔明是一個喜歡探究鉆研的同學,他在和同學們一起研究某條拋物線y=ax2(a<0)的性質時,如圖將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與該拋物線交于A、B兩點,請解答以下問題:
(1)如圖1,若測得OA=OB=22,求a的值;
(2)對同一條拋物線,孔明將三角板繞點O旋轉到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,求此時點A、B的坐標;
(3)對該拋物線,孔明將三角板繞點O旋轉任意角度時驚奇地發(fā)現(xiàn),交點A、B的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標.

OA
=
OB
=
2
2
【考點】二次函數(shù)綜合題.
【答案】(1);
(2)A(-4,-8),;
(3)不論k為何值,直線AB恒過點(0,-2),理由見解答過程.
a
=
-
1
2
(2)A(-4,-8),
B
(
1
,-
1
2
)
(3)不論k為何值,直線AB恒過點(0,-2),理由見解答過程.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/8 8:0:8組卷:85引用:2難度:0.1
相似題
-
1.如圖,拋物線y=ax2+bx-4(a≠0)與x軸交于點A,點B,與y軸交于點C,其對稱軸為直線x=1.過點A的直線y=x+2與拋物線交于另一點E.
(1)該拋物線的解析式為 .
(2)點Q是x軸上的一動點,當△AQE為等腰三角形時,直接寫出Q點的坐標;
(3)點P是第四象限內拋物線上的一個點,過點P作PH⊥AE于H.若PH取得最大值時,求這個最大值;
(4)M是拋物線對稱軸上一點,過M點作MN⊥y軸于點N.當EM+AN最短時,求點M的坐標.發(fā)布:2025/5/23 19:30:1組卷:254引用:4難度:0.2 -
2.在平面直角坐標系中,拋物線G:y=ax2+bx+1(a>0)經(jīng)過點A(2,1),頂點為點B.
(1)求a與b的數(shù)量關系;
(2)設拋物線G的對稱軸為直線l,過A作AM⊥l,垂足為M,且MB=2AM.
①當m-1≤x≤m+1時,求拋物線G的最高點的縱坐標(用含m的式子表示);
②平移拋物線G,當它與直線AB最多只有一個交點時,求平移的最短距離.發(fā)布:2025/5/23 19:30:1組卷:686引用:1難度:0.4 -
3.拋物線y=ax2-4經(jīng)過A、B兩點,且OA=OB,直線EC過點E(4,-1),C(0,-3),點D是線段OA(不含端點)上的動點,過D作PD⊥x軸交拋物線于點P,連接PC、PE.
(1)求拋物線與直線CE的解析式;
(2)求證:PC+PD為定值;
(3)在第四象限內是否存在一點Q,使得以C、P、E、Q為頂點的平行四邊形面積最大,若存在,求出Q點坐標;若不存在,請說明理由.發(fā)布:2025/5/23 19:30:1組卷:154引用:1難度:0.4