在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經過點A(-1,0)和B(0,3),其頂點的橫坐標為1.
(1)求拋物線的表達式.
(2)若直線x=m與x軸交于點N,在第一象限內與拋物線交于點M,當m取何值時,使得AN+MN有最大值,并求出最大值.
(3)若點P為拋物線y=ax2+bx+c(a≠0)的對稱軸上一動點,將拋物線向左平移1個單位長度后,Q為平移后拋物線上一動點.在(2)的條件下求得的點M,是否能與A、P、Q構成平行四邊形?若能構成,求出Q點坐標;若不能構成,請說明理由.
【考點】二次函數綜合題.
【答案】(1)y=-x2+2x+3;
(2)當m=時,AN+MN有最大值,最大值為;
(3)存在以A,P,Q,M為頂點的平行四邊形,點Q的坐標為(-,)或(-,)或(,-).
(2)當m=
3
2
25
4
(3)存在以A,P,Q,M為頂點的平行四邊形,點Q的坐標為(-
1
2
15
4
3
2
7
4
7
2
33
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/4 8:0:8組卷:2398引用:4難度:0.2
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發布:2025/1/2 8:0:1組卷:83引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發布:2024/12/23 17:30:9組卷:3914引用:38難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是( )5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發布:2024/12/26 1:30:3組卷:2686引用:7難度:0.7