如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4.動點P從點A出發(fā),沿線段AB以每秒5個單位的速度向終點B運動,連接PC,作點A關(guān)于PC的對稱點D,連結(jié)CD、DP,設(shè)點P的運動時間為t(秒).
(1)線段AB的長是 55;
(2)連結(jié)BD,則線段BD的最小值是 11,最大值是 55;
(3)當(dāng)點D落在△ABC的內(nèi)部時,求t的取值范圍 925<t<37925<t<37;
(4)當(dāng)直線PD與△ABC的一邊垂直時,求出t的值.
9
25
3
7
9
25
3
7
【考點】三角形綜合題.
【答案】5;1;5;<t<
9
25
3
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:325引用:3難度:0.1
相似題
-
1.問題提出
如圖(1),在△ABC中,AB=AC,D是AC的中點,延長BC至點E,使DE=DB,延長ED交AB于點F,探究的值.AFAB
問題探究
(1)先將問題特殊化.如圖(2),當(dāng)∠BAC=60°時,直接寫出的值;AFAB
(2)再探究一般情形.如圖(1),證明(1)中的結(jié)論仍然成立.
問題拓展
如圖(3),在△ABC中,AB=AC,D是AC的中點,G是邊BC上一點,=CGBC(n<2),延長BC至點E,使DE=DG,延長ED交AB于點F.直接寫出1n的值(用含n的式子表示).AFAB發(fā)布:2025/5/23 0:30:1組卷:3847引用:7難度:0.3 -
2.如圖,已知:Rt△ABC中,∠BAC=90°,AB=AC,點D是BC的中點,點P是BC邊上的一個動點.
(1)如圖1,若點P與點D重合,連接AP,則AP與BC的位置關(guān)系是 ;
(2)如圖2,若點P在線段BD上,過點B作BE⊥AP于點E,過點C作CF⊥AP于點F,則CF,BE和EF這三條線段之間的數(shù)量關(guān)系是 ;
(3)如圖3,在(2)的條件下,若BE的延長線交直線AD于點M,求證:CP=AM;
(4)如圖4,已知BC=4,若點P從點B出發(fā)沿著BC向點C運動,過點B作BE⊥AP于點E,過點C作CF⊥AP于點F,設(shè)線段BE的長度為d1,線段CF的長度為d2,試求出點P在運動的過程中d1+d2的最大值.發(fā)布:2025/5/23 2:30:1組卷:469引用:3難度:0.4 -
3.定理證明
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,求證:CD=AB.12
下面給出了部分證明過程:
證明:如圖1,延長CD至點E,使DE=CD,連接AE,BE,
則,…CD=12CE
請你結(jié)合圖1,補全證明過程;
結(jié)論應(yīng)用
(2)如圖2,在△ABC中,D為邊BC的中點,BE⊥AC于點E,CF⊥AB于點F,連接DE,DF和EF.若BC=10,EF=6,求△DEF的面積;
拓展提高
(3)如圖3,在△ABC中,∠B=30°,∠ADC=45°,AD恰好是中線,求∠ACB的度數(shù).?
發(fā)布:2025/5/23 4:0:1組卷:150引用:1難度:0.2
相關(guān)試卷