在△ABC中,AB=AC,∠BAC=120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線BC上任意一點,在射線CM上截取CE=BD,連接AD、DE、AE.
(1)如圖1,當點D落在線段BC的延長線上時,直接寫出∠ADE的度數(shù);
(2)如圖2,當點D落在線段BC(不含邊界)上時,AC與DE交于點F,請問(1)中的結(jié)論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;
(3)在(2)的條件下,若AB=6,當BD為何值時,△CDF為等腰三角形.(直接寫出答案)

【考點】三角形綜合題.
【答案】(1)30°.
(2)結(jié)論不變,證明見解析部分.
(3)BD的值為6或2.
(2)結(jié)論不變,證明見解析部分.
(3)BD的值為6或2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:709引用:5難度:0.5
相似題
-
1.已知:在△ABC中,AB=AC=10,BC=16,點P、D分別在射線CB、射線AC上,且滿足∠APD=∠ABC.
(1)當點P在線段BC上時,如圖1.
①如果CD=4.8,求BP的長;
②設(shè)B、P兩點的距離為x,AP=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
(2)當BP=1時,求△CPD的面積.(直接寫出結(jié)論,不必給出求解過程)發(fā)布:2025/5/24 12:0:1組卷:310引用:1難度:0.1 -
2.如圖,在△ABC中,∠A=α(0°<α≤90°),將BC邊繞點C逆時針旋轉(zhuǎn)(180°-α)得到線段CD.
(1)判斷∠B與∠ACD的數(shù)量關(guān)系并證明;
(2)將AC邊繞點C順時針旋轉(zhuǎn)α得到線段CE,連接DE與AC邊交于點M(不與點A,C重合).
①用等式表示線段DM,EM之間的數(shù)量關(guān)系,并證明;
②若AB=a,AC=b,直接寫出AM的長.(用含a,b的式子表示)發(fā)布:2025/5/24 14:0:2組卷:1301引用:9難度:0.2 -
3.(1)如圖1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長.
(2)類比探究:如圖2,△ABC中,AC=14,BC=6,點D,E分別在線段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的長.
(3)拓展延伸:如圖3,△ABC中,點D,點E分別在線段AB,AC上,∠EDB=∠ACB=60°.延長DE,BC交于點F,AD=4,DE=5,EF=6,DE<BD,=;BD=.BCAC發(fā)布:2025/5/24 16:30:1組卷:1046引用:6難度:0.1