如圖,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同側作任意Rt△DBC,∠BDC=90°.
(1)若CD=2BD,M是CD中點(如圖1),求證:AD=AM;
下面是小明的證明過程,請你將它補充完整:
證明:設AB與CD相交于點O,
∵∠BDC=90°,∠BAC=90°,
∴∠DOB+∠DBO=∠AOC+∠ACO=90°.
∵∠DOB=∠AOC,
∴∠DBO=∠MCAMCA.
∵M是DC的中點,CD=2BD,
∴CM=12CD=BDBD.
又∵AB=AC,
∴△ADB≌△AMC.
∴AD=AM.
(2)若CD<BD(如圖2),在BD上是否存在一點N,使得△ADN是以DN為斜邊的等腰直角三角形?若存在,請在圖2中確定點N的位置,并加以證明;若不存在,請說明理由;
(3)當CD≠BD時,線段AD,BD與CD滿足怎樣的數量關系?請直接寫出.
1
2
【考點】三角形綜合題.
【答案】MCA;BD
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/17 8:0:9組卷:40引用:1難度:0.3
相似題
-
1.已知,如圖,在平面直角坐標系中,A為y軸正半軸上一點,B為x軸負半軸上一點.
(1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
(2)如圖2,C為x軸正半軸上一點,BP平分∠ABC,且P在AC的垂直平分線上.若∠ABC=2∠ACB,求證:AP∥BC.
(3)在第(2)問的條件下,D是AB上一點,E是x軸正半軸上一點,連AE交DP于H.當∠DHE與∠ABE滿足什么條件時,DP=AE,請說明理由.發布:2025/6/17 19:30:1組卷:75引用:1難度:0.3 -
2.把一副三角板按如圖1擺放(點C與點E重合),點B,C(E),F在同一直線上.∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,點P是線段AB的中點.△DEF從圖1的位置出發,以4cm/s的速度沿CB方向勻速運動,如圖2,DE與AC相交于點Q,連接PQ.當點D運動到AC邊上時,△DEF停止運動.設運動時間為t(s).
(1)當t=1時,求AQ的長;
(2)當t為何值時,點A在線段PQ的垂直平分線上?
(3)當t為何值時,△APQ是直角三角形?發布:2025/6/17 21:30:1組卷:286引用:3難度:0.1 -
3.如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,連接CE交AD于點F,連接BD交CE于點G,連接BE.下列結論中,正確的結論有( )
①CE=BD;
②△ADC是等腰直角三角形;
③∠ADB=∠AEB;
④S四邊形BCDE=BD?CE;12
⑤BC2+DE2=BE2+CD2.A.1個 B.2個 C.3個 D.4個 發布:2025/6/18 15:30:1組卷:1902引用:10難度:0.7