如圖(1),在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-1,0),B(3,0),與y軸交于C(0,3),頂點為D(1,4),對稱軸為DE.
(1)拋物線的解析式是y=-x2+2x+3y=-x2+2x+3;
(2)如圖(2),點P是AD上一個動點,P′是P關于DE的對稱點,連接PE,過P′作P′F∥PE交x軸于F.設S四邊形EPP′F=y,EF=x,求y關于x的函數關系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標;若不存在.請說明理由.

【考點】二次函數綜合題.
【答案】y=-x2+2x+3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:1159引用:52難度:0.5
相似題
-
1.已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,AB=
,AC=25.5
(1)求A、B、C三點的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設點P是拋物線在第一象限部分上的點,△PAC的面積為S,求使S面積最大時點P的坐標;
(4)在拋物線對稱軸上,是否存在這樣點M,使得△AMP為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.發布:2025/5/22 20:30:1組卷:67引用:1難度:0.4 -
2.對于某些三角形,我們可以直接用面積公式或是用割補法等來求它們的面積,下面我們研究一種求面積的新方法:如圖1所示,分別過三角形的頂點A、C作水平線的鉛垂線l1、l2,l1、l2之間的距離d叫做水平寬;如圖1所示,過點B作水平線的鉛垂線交AC于點D,稱線段BD的長叫做這個三角形的鉛垂高.
結論提煉:容易證明,“三角形的面積等于水平寬與鉛垂高乘積的一半”,即“”.S=12dh
嘗試應用:
已知:如圖2,點A(-5,3)、B(4,0)、C(0,6),則△ABC的水平寬為 ,鉛垂高為 ,所以△ABC的面積為 .
學以致用:
如圖3,在平面直角坐標系中,拋物線的解析式為:y=-x2+2x+3,點B為拋物線的頂點,圖象與y軸交于點A,與x軸交于E、C兩點,BD為△ABC的鉛垂高,延長BD交x軸于點F,則頂點B坐標為 ,鉛垂高BD=,△ABC的面積為 .發布:2025/5/22 20:30:1組卷:579引用:1難度:0.4 -
3.已知拋物線y=ax2+bx+3 經過點A(2,3).
(1)用含a的式子表示b;
(2)若拋物線開口向上,點P(m,n)是拋物線上一動點,當-1≤m≤2時,n的最大值是5,求a的值.
(3)將點M(-1,4)向右平移5個單位長度得到點N,若線段MN與拋物線只有一個公共點,直接寫出a的取值范圍.發布:2025/5/22 20:30:1組卷:459引用:1難度:0.3