閱讀與思考
下面是小宇同學的數學小論文,請仔細閱讀并完成相應的任務.
用函數觀點認識一元二次方程根的情況 我們知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相應的二次函數y=ax2+bx+c(a≠0)的圖象(稱為拋物線)與x軸交點的橫坐標.拋物線與x軸的交點有三種情況:有兩個交點、有一個交點、無交點.與此相對應,一元二次方程的根也有三種情況:有兩個不相等的實數根、有兩個相等的實數根、無實數根.因此可用拋物線與x軸的交點個數確定一元二次方程根的情況. 下面根據拋物線的頂點坐標(- b 2 a 4 ac - b 2 4 a (1)a>0時,拋物線開口向上. ①當Δ=b2-4ac>0時,有4ac-b2<0.∵a>0,∴頂點縱坐標 4 ac - b 2 4 a ∴頂點在x軸的下方,拋物線與x軸有兩個交點(如圖1). ②當Δ=b2-4ac=0時,有4ac-b2=0.∵a>0,∴頂點縱坐標 4 ac - b 2 4 a ∴頂點在x軸上,拋物線與x軸有一個交點(如圖2). ∴一元二次方程ax2+bx+c=0(a≠0)有兩個相等的實數根. ③當Δ=b2-4ac<0時, …… (2)a<0時,拋物線開口向下. …… ![]() |
AC
AC
(從下面選項中選出兩個即可);A.數形結合
B.統計思想
C.分類討論
D.轉化思想
(2)請參照小論文中當a>0時①②的分析過程,寫出③中當a>0,Δ<0時,一元二次方程根的情況的分析過程,并畫出相應的示意圖;
(3)實際上,除一元二次方程外,初中數學還有一些知識也可以用函數觀點來認識.例如:可用函數觀點來認識一元一次方程的解.請你再舉出一例為
可用函數觀點認識二元一次方程組的解(答案不唯一)
可用函數觀點認識二元一次方程組的解(答案不唯一)
.【考點】根的判別式.
【答案】AC;可用函數觀點認識二元一次方程組的解(答案不唯一)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:1287引用:13難度:0.6
相似題
-
1.對于一元二次方程ax2+bx+c=0(a≠0),下列說法:
①若a+c=b,則b2-4ac≥0;
②若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
③若x=c是方程ax2+bx+c=0的一個根,則一定有ac+b+1=0成立;
④若x=x0是一元二次方程ax2+bx+c=0的根,則;b2-4ac=(2ax0+b)2
其中正確的( )A.只有①②④ B.只有①②③ C.只有②③④ D.只有①② 發布:2024/12/23 13:0:2組卷:504引用:6難度:0.5 -
2.已知關于x的一元二次方程mx2-3(m+1)x+2m+3=0
(1)如果該方程有兩個不相等的實數根,求m的取值范圍;
(2)在(1)的條件下,當該方程的兩個根都是整數,求正整數m的值.發布:2024/12/23 11:0:1組卷:988引用:4難度:0.6 -
3.已知關于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根,第三邊BC的長為5,當△ABC是直角三角形時,求k的值.發布:2024/12/23 18:0:1組卷:3012引用:13難度:0.7