已知拋物線y=ax2+bx+2與x軸交于A(-1,0)和B兩點,且AB=5,與y軸交于C,且對于該二次函數(shù)圖象上的任意兩點P1(x1,y1),P2(x2,y2),當(dāng)x1<x2≤-1時,總有y1<y2.
(1)求拋物線的解析式;
(2)過點A的直線l:y=kx+b與該拋物線交于另一點E,與線段BC交于點F.
①若∠EFB=45°,求點E的坐標(biāo);
②當(dāng)t≤k≤t+14時,AFEF的最小值是52,求t的值.
t
≤
k
≤
t
+
1
4
AF
EF
5
2
【考點】二次函數(shù)綜合題.
【答案】(1);
(2)①點E的坐標(biāo)為;②或.
y
=
-
1
2
x
2
+
3
2
x
+
2
(2)①點E的坐標(biāo)為
(
10
3
,
13
9
)
3
4
-
2
2
1
+
2
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/23 1:30:2組卷:168引用:1難度:0.3
相似題
-
1.如圖,直線
與x軸、y軸分別交于點B、A,拋物線y=-x2+bx+c經(jīng)過點B,與y軸交于點C(0,4).y=-12x+2
(1)求拋物線的函數(shù)表達式;
(2)點P是x軸上方拋物線上的動點,過點P作PD⊥x軸于點D,若以點P、D、B為頂點的三角形與△AOB相似,求點P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:358引用:2難度:0.3 -
2.在平面直角坐標(biāo)系xOy中,拋物線y=
x2+bx+c過點A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點為P(m,n)(m>0).
ⅰ.如果S△OBP=3,設(shè)直線x=k,在這條直線的右側(cè)原拋物線和新拋物線均呈上升趨勢,求k的取值范圍;
ⅱ.點P在原拋物線上,新拋物線交y軸于點Q,且∠BPQ=120°,求點P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+3ax(a為常數(shù),a<0)與x軸交于O,A兩點,點B為拋物線的頂點,點D是線段OA上的一個動點,連接BD并延長與過O,A,B三點的⊙P相交于點C,過點C作⊙P的切線交x軸于點E.
(1)①求點A的坐標(biāo);②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當(dāng),∠CAE=∠OBE時,a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發(fā)布:2025/5/24 1:0:1組卷:575引用:1難度:0.3