如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下列幾個問題,請你幫助解決.
(1)如圖2,將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉使E點落在CD邊上,此時EF恰好經過點A,請證明:△ADE∽△FGE;
(2)如圖3,在(1)的條件下,小明先將△EFG的邊EG和矩形的邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數關系式.
(3)如圖4,在(1)的條件下,小明把該圖形放在直角坐標系中,使B(G)為坐標原點BC為x軸,在x軸和y上分別找P,Q兩點使△DPQ與△ABF相似,直接寫出P點的坐標.

【考點】相似形綜合題.
【答案】(1)證明過程見解答;
(2)y=
;
(3)P點的坐標為(,0)或(,0)或(-,0)或(-,0)或(-6,0)或(10,0)或(-10,0)或(-26,0).
(2)y=
- 1 4 x 2 + 5 x ( 0 ≤ x ≤ 4 ) |
- 2 x + 24 ( 4 < x ≤ 10 ) |
(3)P點的坐標為(
3
2
5
2
5
2
7
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:63引用:1難度:0.2
相似題
-
1.綜合與實踐
問題情境:如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞點B順時針旋轉得到Rt△EBD,連接AE,連接CD并延長交AE于點F.
猜想驗證:(1)試猜想△CBD與△ABE是否相似?并證明你的猜想.
探究證明:(2)如圖,連接BF交DE于點H,AB與CF相交于點G,是否成立?并說明理由.DHBH=FHEH
拓展延伸:(3)若CD=EF,直接寫出的值.BCAB發布:2025/5/23 21:30:2組卷:282引用:3難度:0.2 -
2.已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.
問題發現:
(1)①如圖1,若四邊形ABCD是正方形,且DE⊥CF于G,則=;DECF
②如圖2,當四邊形ABCD是矩形時,且DE⊥CF于G,AB=m,AD=n,則=;DECF
拓展研究:
(2)如圖3,若四邊形ABCD是平行四邊形,且∠B+∠EGC=180°時,求證:;DECF=ADCD
解決問題:
(3)如圖4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,請直接寫出的值.DECF發布:2025/5/23 23:30:1組卷:2292引用:6難度:0.3 -
3.在矩形ABCD中,AB=2,AD=4,F是對角線AC上不與點A,C重合的一點,過F作FE⊥AD于E,將△AEF沿EF翻折得到△GEF,點G在射線AD上,連接CG.
(1)如圖1,若點A的對稱點G落在AD上,∠FGC=90°,延長GF交AB于H,連接CH.
①求證:△CDG∽△GAH;
②求tan∠GHC.
(2)如圖2,若點A的對稱點G落在AD延長線上,∠GCF=90°,判斷△GCF與△AEF是否全等,并說明理由.發布:2025/5/23 23:0:1組卷:1132引用:5難度:0.3