已知曲線C:x2-y2=1,過點T(t,0)作直線l和曲線C交于A、B兩點.
(1)求曲線C的焦點到它的漸近線之間的距離;
(2)若t=0,點A在第一象限,AH⊥x軸,垂足為H,連結(jié)BH,求直線BH傾斜角的取值范圍;
(3)過點T作另一條直線m,m和曲線C交于E、F兩點,問是否存在實數(shù)t,使得AB?EF=0和|AB|=|EF|同時成立?如果存在,求出滿足條件的實數(shù)t的取值集合,如果不存在,請說明理由.
AB
?
EF
AB
EF
【考點】直線與雙曲線的綜合.
【答案】(1);
(2);
(3)存在,.
d
=
|
2
-
0
|
2
=
1
(2)
(
0
,
arctan
1
2
)
(3)存在,
{
-
2
,
2
}
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:326引用:2難度:0.5
相似題
-
1.已知雙曲線C:
=1(a>0,b>0)的左頂點為A,過左焦點F的直線與C交于P,Q兩點.當(dāng)PQ⊥x軸時,|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過定點.發(fā)布:2024/12/18 0:0:1組卷:712引用:8難度:0.5 -
2.如圖,在平面直角坐標(biāo)系xOy中,已知等軸雙曲線E:
(a>0,b>0)的左頂點A,過右焦點F且垂直于x軸的直線與E交于B,C兩點,若△ABC的面積為x2a2-y2b2=1.2+1
(1)求雙曲線E的方程;
(2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點,與雙曲線E的兩條漸近線分別交于P,Q兩點,求的取值范圍.|MN||PQ|發(fā)布:2024/10/31 12:30:1組卷:543引用:11難度:0.5 -
3.已知雙曲線
的左、右焦點分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點,若A為線段BF1的中點,且BF1⊥BF2,則C的離心率為( )C:x2a2-y2b2=1(a>0,b>0)A. 3B.2 C. 3+1D.3 發(fā)布:2024/11/8 21:0:2組卷:445引用:8難度:0.5