試卷征集
          加入會員
          操作視頻

          勾股定理是人類最偉大的十個科學發現之一,西方國家稱之為畢達哥拉斯定理.在我國古書《周髀算經》中就有“若勾三,股四,則弦五”的記載,我國漢代數學家趙爽為了證明勾股定理,創制了一幅“弦圖”(如圖1),后人稱之為“趙爽弦圖”,流傳至今.勾股定理內容為:如果直角三角形的兩條直角邊分別為a,b,斜邊為c,那么a2+b2=c2
          (1)如圖2、3、4,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關系滿足S1+S2=S3的有
          3
          3
          個;
          (2)如圖5所示,分別以直角三角形三邊為直徑作半圓,設圖中兩個月形圖案(圖中陰影部分)的面積分別為S1,S2,直角三角形面積為S3,請判斷S1,S2,S3的關系并證明;
          (3)如果以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復這一過程就可以得到如圖6所示的“勾股樹”.在如圖7所示的“勾股樹”的某部分圖形中,設大正方形M的邊長為定值m,四個小正方形A,B,C,D的邊長分別為a,b,c,d,已知∠1=∠2=∠3=∠α,則當∠α變化時,回答下列問題:(結果可用含m的式子表示)
          ①a2+b2+c2+d2=
          m2
          m2

          ②b與c的關系為
          b=c
          b=c
          ,a與d的關系為
          a+d=m
          a+d=m

          【考點】勾股定理的證明
          【答案】3;m2;b=c;a+d=m
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/4/24 14:0:35組卷:1084引用:3難度:0.3
          相似題
          • 1.10.《時代數學學習》雜志2007年3月將改版為《時代學習報?數學周刊》,其徽標是我國古代“弦圖”的變形(見示意圖).該圖可由直角三角形ABC繞點O同向連續旋轉三次(每次旋轉90°)而得.因此有“數學風車”的動感.假設中間小正方形的面積為1,整個徽標(含中間小正方形)的面積為92,AD=2,則徽標的外圍周長為(  )

            發布:2025/1/25 8:0:2組卷:366引用:2難度:0.6
          • 2.如圖是中國古代數學家趙爽用來證明勾股定理的弦圖示意圖,它是由四個全等的直角三角形和一個小正方形EFGH組成,恰好拼成一個大正方形ABCD,連結EG并延長交CD于點P.若AE=3EF=3,則DP的長為(  )

            發布:2025/5/22 3:30:2組卷:581引用:4難度:0.4
          • 3.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結論正確的是
            .(填序號即可)
            ①x-y=2;
            ②x2+y2=49;
            ③2xy=45;
            ④x+y=9.

            發布:2024/12/23 12:0:2組卷:460引用:3難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正