問題背景:如圖1,在四邊形ACBD中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數量關系.
小楊同學探究此問題的思路是:將△ACD繞點D逆時針旋轉90°到△DBN處,點A、C分別落在點B、N處(如圖2),∠DBN=∠DAC,∠BDN=∠ADC;因為在四邊形ACBD中,∠ACB=∠ADB=90°,所以∠DAC+∠DBC=180°,所以∠DBN+∠DBC=180°,點C、B、N在同一條直線上:易證△CDN是等腰直角三角形,所以CN=2CD,從而得出結論:AC+BC=2CD.

?簡單應用:利用已學知識和小楊得出的結論,解決以下問題:
(1)如圖1,∠ACB=∠ADB=90°,AD=BD,若AB=13,AC=12,求CD的長;
(2)如圖3,已知AB是⊙O的直徑,點C、D在⊙O上,?AD=?BD,求證:AC+BC=2CD;
拓展延伸:
(3)如圖4,∠ACB=∠ADB=90°,AC=BC,⊙O是四邊形ABDC的外接圓,若AD=24,BD=7,求CD的長.
2
2
?
AD
=
?
BD
2
【考點】圓的綜合題.
【答案】簡單應用:(1);(2)證明見解答過程;
拓展延伸:(3).
17
2
2
拓展延伸:(3)
17
2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/9/24 0:0:9組卷:99難度:0.5
相似題
-
1.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發布:2025/1/28 8:0:2組卷:44難度:0.3 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉,得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F,當GM=GD時,求切線CF的長.發布:2025/1/28 8:0:2組卷:782引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發布:2025/1/28 8:0:2組卷:100引用:1難度:0.1