如圖.在直角坐標平面xOy中,直線y=-x+5分別與x軸、y軸交于A、B兩點,拋物線y=x2+bx+c經過A、B兩點,點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)拋物線與x軸的另一個交點為C,點M(a,-74)在拋物線對稱軸左側的圖象上,將拋物線向上平移m個單位(m>0),使點M落在△ABC內,求m的取值范圍;
(3)對稱軸與直線AB交于點E,P是線段AB上的一個動點(P不與E重合),過P作y軸的平行線交原拋物線于點Q,當PE=QD時,求點Q的坐標.

M
(
a
,-
7
4
)
【考點】二次函數綜合題.
【答案】(1)拋物線的解析式為y=x2-6x+5,頂點D的坐標是(3,-4);
(2)m的取值范圍是得<m<;
(3)點Q的坐標為(2,-3)或(4,-3).
(2)m的取值范圍是得
7
4
21
4
(3)點Q的坐標為(2,-3)或(4,-3).
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:670引用:2難度:0.3
相似題
-
1.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44難度:0.1 -
2.在平面直角坐標系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
(1)求拋物線的解析式;
(2)當點F在第一象限運動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當S取最大值時,求點F的坐標;
(3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標.發布:2025/5/23 3:0:1組卷:458難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經過B、C兩點,與x軸的另一個交點為A.
(1)如圖1,求b、c的值;
(2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設點P的橫坐標為t,△ADC的面積為S,求S與t的函數關系式;
(3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為,求E點坐標.54發布:2025/5/23 3:0:1組卷:205難度:0.1