試卷征集
          加入會員
          操作視頻

          第33屆夏季奧林匹克運動會即將于2024年在巴黎舉辦,其中游泳比賽分為預賽、半決賽和決賽三個階段,只有預賽、半決賽都獲勝才有資格進入決賽.已知甲在預賽和半決賽中獲勝的概率分別為
          1
          2
          2
          3
          ,乙在預賽和半決賽中獲勝的概率分別為
          2
          3
          3
          4
          ,丙在預賽和半決賽中獲勝的概率分別為p和
          4
          3
          -
          p
          ,其中
          1
          3
          p
          2
          3

          (1)甲、乙、丙三人中,哪個人進入決賽的可能性更大?
          (2)如果甲、乙、丙三人中恰有兩人進入決賽的概率為
          11
          36
          ,求p的值;
          (3)在(2)的條件下,設甲、乙、丙三人中進入決賽的人數為ξ,求ξ的分布列.

          【答案】(1)乙;
          (2)
          1
          2
          ;
          (3)分布列見解答.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/9/26 10:0:2組卷:226引用:1難度:0.5
          相似題
          • 1.設隨機變量ξ等可能取值1,2,3,4,…,n,如果p(ξ<4)=0.3,則n的值為( ?。?/h2>

            發布:2024/12/29 12:30:1組卷:30引用:4難度:0.9
          • 2.甲、乙去某公司應聘面試.該公司的面試方案為:應聘者從6道備選題中一次性隨機抽取3道題,按照答對題目的個數為標準進行篩選.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是
            2
            3
            ,且每題正確完成與否互不影響.
            (1)分別求甲、乙兩人正確完成面試題數的分布列;
            (2)請分析比較甲、乙兩人誰的面試通過的可能性較大?

            發布:2024/12/29 13:0:1組卷:237引用:4難度:0.8
          • 3.設X是一個離散型隨機變量,其分布列如表,則q等于( ?。?br />
            X -1 0 1
            P 0.5 1-2q q2

            發布:2024/12/29 12:30:1組卷:1242引用:21難度:0.9
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正