設向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ).
(1)若a與b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的最大值;
(3)若tanαtanβ=16,求證:a∥b.
a
=
(
4
cosα
,
sinα
)
,
b
=
(
sinβ
,
4
cosβ
)
,
c
=
(
cosβ
,-
4
sinβ
)
a
b
-
2
c
|
b
+
c
|
a
b
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:1208引用:30難度:0.7
相似題
-
1.已知tanα=1,tanβ=2,則tan(α-β)=( )
A. -13B. 13C.3 D.-3 發布:2025/1/7 22:30:4組卷:13引用:2難度:0.7 -
2.已知α,β,γ∈
,sinα+sinγ=sinβ,cosβ+cosγ=cosα,則下列說法正確的是( )(0,π2)A. cos(β-α)=12B. cos(β-α)=-12C. β-α=π3D. β-α=-π3發布:2024/12/29 9:30:1組卷:102引用:6難度:0.6 -
3.已知α∈(
,π),sinα=π2,則tan(α+35)=( )π4A. -17B.7 C. 17D.-7 發布:2024/12/29 12:30:1組卷:354引用:16難度:0.7