二次函數y=(x-2)2+h(b≤x≤b+1)的圖象上任意二點連線不與x軸平行,則b的取值范圍為 b≤1或b≥2b≤1或b≥2.
【答案】b≤1或b≥2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/30 15:30:2組卷:184引用:2難度:0.6
相似題
-
1.求拋物線y=x2-4x+3分別與x軸、y軸的交點坐標,對稱軸的方程,頂點的坐標,并在如圖所示的平面直角坐標系中,畫出y=x2-4x+3的圖象.
發布:2025/5/31 22:0:1組卷:52引用:1難度:0.5 -
2.請你寫出一個二次函數,其圖象滿足條件:①開口向下;②與y軸的交點坐標為(0,3).此二次函數的解析式可以是 .
發布:2025/5/31 23:0:1組卷:751引用:22難度:0.8 -
3.已知二次函數y=x2-2x-3.
(1)求二次函數y=x2-2x-3圖象的頂點坐標;
(2)在平面直角坐標系xOy中,畫出二次函數y=x2-2x-3的圖象;
(3)結合圖象直接寫出自變量0≤x≤3時,函數的最大值和最小值.發布:2025/5/31 23:30:2組卷:227引用:4難度:0.5