如圖1,在平面直角坐標(biāo)系中,拋物線y=-29x2+bx+c與x軸交于點(diǎn)A(-3,0),點(diǎn)B(9,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線對稱軸與x軸交于點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對稱的對稱點(diǎn),過點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,當(dāng)△PMN為等腰三角形時,求此時EM的長.

2
9
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:349引用:3難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對稱軸x=-1上的一個動點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).發(fā)布:2025/6/23 12:30:1組卷:27643引用:102難度:0.5 -
2.已知拋物線y=x2-2mx+m2+m-1(m是常數(shù))的頂點(diǎn)為P,直線l:y=x-1.
(1)求證:點(diǎn)P在直線l上;
(2)當(dāng)m=-3時,拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,與直線l的另一個交點(diǎn)為Q,M是x軸下方拋物線上的一點(diǎn),∠ACM=∠PAQ(如圖),求點(diǎn)M的坐標(biāo);
(3)若以拋物線和直線l的兩個交點(diǎn)及坐標(biāo)原點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出所有符合條件的m的值.發(fā)布:2025/6/23 13:0:10組卷:3408引用:53難度:0.2 -
3.如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D.
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)E作EF∥BD交拋物線于點(diǎn)F,以B,D,E,F(xiàn)為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值.發(fā)布:2025/6/23 11:30:2組卷:1904引用:25難度:0.1