如圖,已知直線y=43x+4與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+4經過A,C兩點,且與x軸的另一個交點為B,對稱軸為直線x=-1.
(1)求拋物線的表達式;
(2)D是第二象限內拋物線上的動點,設點D的橫坐標為m,求四邊形ABCD面積S的最大值及此時D點的坐標;
(3)若點P在拋物線對稱軸上,是否存在點P,Q,使以點A,C,P,Q為頂點的四邊形是以AC為對角線的菱形?若存在,請求出P,Q兩點的坐標;若不存在,請說明理由.

y
=
4
3
x
+
4
【考點】二次函數綜合題.
【答案】(1);(2)(-1.5,5);(3)存在,,.
y
=
-
4
3
x
2
-
8
3
x
+
4
P
(
-
1
,
18
3
)
Q
(
-
2
,
19
8
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/21 8:0:9組卷:676引用:6難度:0.5
相似題
-
1.如圖,已知拋物線
與x軸負半軸交于點A,與x軸正半軸交于點B,與y軸交于點C,點P拋物線上一動點(P與C不重合).y=1m(x+2)(x-m)
(1)求點A、C的坐標;
(2)當S△ABC=6時,拋物線上是否存在點P(C點除外)使∠PAB=∠BAC?若存在,請求出點P的坐標,若不存在,請說明理由;
(3)當AP∥BC時,過點P作PQ⊥x軸于點Q,求BQ的長.發布:2025/5/23 2:30:1組卷:175難度:0.3 -
2.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44難度:0.1 -
3.綜合與探究
已知拋物線C1:y=ax2+bx-5(a≠0).
(1)當拋物線經過(-1,-8)和(1,0)兩點時,求拋物線的函數表達式.
(2)當b=4a時,無論a為何值,直線y=m與拋物線C1相交所得的線段AB(點A在點B的左側)的長度始終不變,求m的值和線段AB的長.
(3)在(2)的條件下,將拋物線C1沿直線y=m翻折得到拋物線C2,拋物線C1,C2的頂點分別記為G,H.是否存在實數a使得以A,B,G,H為頂點的四邊形為正方形?若存在,直接寫出a的值;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:463引用:3難度:0.3