(1)問題提出:如圖①,在△CDE中,將線段CE向左平移到AB的位置,點C,E的對應點分別是A,B,連接AC,AB交CD于點O,若∠DOB=70°,∠E=60°,則∠ACD=5050°;
(2)問題探究:如圖②,在等邊△ABC中,點D是AC右側平面上一點,連接DA,DC,DB,以點B為旋轉中心將BD順時針旋轉60°,得到BE,連接CE,若BD=7,CD=4,求線段AD的最小值;
(3)問題解決:如圖③,要在一塊空地上規劃出一個四邊形景觀湖ABCD,連接AC,BD.根據規劃要求AC=BD=300米,AC與BD所夾銳角為60°.考慮游客安全問題的同時達到美觀的效果,現要沿AB和CD修建綠化帶(寬度忽略不計).為節省費用要使綠化帶的總長最短,問AB+CD的長度是否存在最小值?若存在,請你求出AB+CD的最小值;若不存在,請說明理由.

【考點】四邊形綜合題.
【答案】50
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/23 12:26:7組卷:138引用:3難度:0.1
相似題
-
1.(1)已知:等腰△ABC,∠A=120°,AB=AC,若AB=1,則BC的長是 .
(2)在△ABC中,AB=AC,∠BAC=90°,點D是△ABC外一點,點D與點C在直線AB的異側,且點D,A,C不共線,連接AD,BD,CD,滿足∠ADB=45°.求證:BD2+2AD2=DC2.
(3)如圖,已知四邊形ABCD中,∠ABC=∠BCD=90°,AB=2,AC=4,DC=6,點E是線段DC上的一個動點(點E不與點C和點D重合),連接BE,過點C作CF⊥BE交BE于點F,點G在線段BF上,且滿足∠FCG=30°,點M是線段AC上的動點,點N是線段AB上的動點.當點G在△ABC的內部時,是否存在△MNG周長的最小值?如果存在,請你求出△MNG周長的最小值;如果不存在,請你說明理由.發布:2025/5/22 23:0:1組卷:614引用:3難度:0.1 -
2.已知:△ABC和△ADE是兩個不全等的等腰直角三角形,其中BA=BC,DA=DE,連接EC,取EC的中點M,連接BM和DM.
(1)如圖1,分別取AC和AE的中點G、H,連接BG、MG、MH、DH,那么BD和BM的數量關系是 ;
(2)將圖1中的△ABC繞點A旋轉到圖2的位置時,判斷(1)中的結論是否仍然成立,并說明理由;
(3)已知正方形ABCP的邊長為2,正方形ADEQ的邊長為10,現將正方形ABCP繞點A順時針旋轉,在整個旋轉過程中,當C、P、E三點共線時,請直接寫出BD的長.發布:2025/5/22 23:30:1組卷:115引用:1難度:0.1 -
3.綜合與實踐
問題情境:數學活動課上,老師出示了一個問題:如圖①,在?ABCD中,BE⊥AD,垂足為E,F為CD的中點,連接EF,BF,試猜想EF與BF的數量關系,并加以證明.
獨立思考:(1)請解答老師提出的問題;
實踐探究:(2)希望小組受此問題的啟發,將?ABCD沿著BF(F為CD的中點)所在直線折疊,如圖②,點C的對應點為C′,連接DC′并延長交AB于點G,請判斷AG與BG的數量關系,并加以證明.
問題解決:(3)智慧小組突發奇想,將?ABCD沿過點B的直線折疊,如圖③,點A的對應點為A′,使A′B⊥CD于點H,折痕交AD于點M,連接A′M,交CD于點N.該小組提出一個問題:若此?ABCD的面積為20,邊長AB=5,BC=2,求圖中陰影部分(四邊形BHNM)的面積.請你思考此問題,直接寫出結果.5發布:2025/5/22 23:30:1組卷:4971引用:17難度:0.1