如圖,在矩形ABCD中,BC=6,連接AC,且∠BAC=30°.點(diǎn)E從點(diǎn)A出發(fā),沿AC方向以每秒2個單位長度的速度向終點(diǎn)C運(yùn)動,同時點(diǎn)G從點(diǎn)C出發(fā),沿CB方向以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)E運(yùn)動的時間是t秒(t>0),過點(diǎn)E作EF⊥AB于點(diǎn)F,連接FG.
?
(1)AB的長為 6363;用含t的式子表示EF的長度:EF=tt;
(2)求證:四邊形EFGC是平行四邊形,并求當(dāng)四邊形EFGC為菱形時的周長;
(3)連接EG,試判斷∠EGF是否能為90°,若能,求出相應(yīng)的t值;若不能,請說明理由;
(4)當(dāng)點(diǎn)G關(guān)于點(diǎn)E的對稱點(diǎn)G′在△ACD的邊上時,請直接寫出t的值.
3
3
【考點(diǎn)】四邊形綜合題.
【答案】6;t
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/18 8:0:9組卷:109引用:2難度:0.5
相似題
-
1.(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為.
(2)【拓展探究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),請判斷線段BE與AF的數(shù)量關(guān)系,并就圖2的情形說明理由.
(3)【問題解決】
當(dāng)AB=AC=2,且第(2)中的正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時,請直接寫出線段AF的長.發(fā)布:2025/5/24 21:30:1組卷:328引用:4難度:0.2 -
2.知識再現(xiàn):已知,如圖1,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,且∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)如圖1,作AH⊥MN,垂足為點(diǎn)H,猜想AH與AB有什么數(shù)量關(guān)系?并進(jìn)行證明.
知識運(yùn)用:(2)如圖2,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F(xiàn)為邊CD上一點(diǎn),且∠FEC=2∠BAE,AB=24,求DF的長.
知識拓展:(3)已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,AD=6,求CD的長.發(fā)布:2025/5/24 21:0:1組卷:268引用:2難度:0.4 -
3.已知:線段EF和矩形ABCD如圖①擺放(點(diǎn)E與點(diǎn)B重合),點(diǎn)F在邊BC上EF=1cm,AB=4cm,BC=8cm.如圖②.EF從圖①的位置出發(fā),沿BC方向運(yùn)動,速度為1cm/s;動點(diǎn)P同時從點(diǎn)D出發(fā),沿DA方向運(yùn)動,速度為1cm/s.點(diǎn)M為AB的中點(diǎn),連接PM,ME,DF,PM與AC相交于點(diǎn)Q,設(shè)運(yùn)動時間為(s)(0<1≤7).解答下列問題:
(1)當(dāng)PM⊥AC時,求r的值;
(2)設(shè)五邊形PMEFD的面積為S(cm2),求S與t的關(guān)系式;
(3)當(dāng)ME∥AC時,求線段AQ的長;
(4)當(dāng)t為何值時,五邊形DAMEF的周長最小,最小是多少?直接寫出答案即可)發(fā)布:2025/5/24 21:0:1組卷:133引用:1難度:0.1