知識再現:已知,如圖1,四邊形ABCD是正方形,點M、N分別在邊BC、CD上,連接AM、AN、MN,且∠MAN=45°,延長CB至G使BG=DN,連接AG,根據三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)如圖1,作AH⊥MN,垂足為點H,猜想AH與AB有什么數量關系?并進行證明.
知識運用:(2)如圖2,四邊形ABCD是正方形,E是邊BC的中點,F為邊CD上一點,且∠FEC=2∠BAE,AB=24,求DF的長.
知識拓展:(3)已知∠BAC=45°,AD⊥BC于點D,且BD=2,AD=6,求CD的長.

【考點】四邊形綜合題.
【答案】(1)AH=AB;證明見解析;
(2)8;
(3)3.
(2)8;
(3)3.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/24 21:0:1組卷:268引用:2難度:0.4
相似題
-
1.問題背景
(1)如圖,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數據填空:四邊形DBFE的面積S=,△EFC的面積S1=,△ADE的面積S2=
探究發現
(2)在(1)中,若BF=a,FC=b,DE與BC間的距離為h.請證明S2=4S1S2.
拓展遷移
(3)如圖,?DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結論求△ABC的面積.發布:2025/5/25 0:30:1組卷:590引用:6難度:0.5 -
2.定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.
(1)判斷:一個內角為120°的菱形等距四邊形.(填“是”或“不是”)
(2)如圖2,在5×5的網格圖中有A、B兩點,請在答題卷給出的兩個網格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.
端點均為非等距點的對角線長為端點均為非等距點的對角線長為
(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數.發布:2025/5/25 0:30:1組卷:636引用:4難度:0.3 -
3.如圖,在矩形ABCD中,AB=2BC,F、G分別為AB、DC邊上的動點,連接GF,沿GF將四邊形AFGD翻折至四邊形EFGP,點E落在BC上,EP交CD于點H,連接AE交GF于點O.
(1)寫出GF與AE之間的位置關系是:;
(2)求證:AE=2GF;
(3)連接CP,若sin∠CGP=,GF=35,求CE的長.10發布:2025/5/25 0:30:1組卷:2006引用:7難度:0.2