已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,雙曲線C上有兩點(diǎn)A,B滿足OA+OB=0,且∠F1AF2=2π3,若四邊形F1AF2B的周長l與面積S滿足3l2=80S,則雙曲線C的離心率為( ?。?/h1>
C
:
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
OA
+
OB
=
0
∠
F
1
A
F
2
=
2
π
3
3
l
2
=
80
S
6 2 | 7 2 | 21 3 | 2 3 |
【考點(diǎn)】求橢圓的離心率.
【答案】A
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/10 1:0:1組卷:176引用:5難度:0.5
相關(guān)試卷