閱讀以下內容并回答問題:
如圖1,在平面直角坐標系xOy中,有一個△OEF,要求在△OEF內作一個內接正方形ABCD,使正方形A,B兩個頂點在△OEF的OE邊上,另兩個頂點C,D分別在EF和OF兩條邊上.
小麗感到要使四邊形的四個頂點同時滿足上述條件有些困難,但可以先讓四邊形的三個頂點滿足條件,于是她先畫了一個有三個頂點在三角形邊上的正方形(如圖2).接著她又在△OEF內畫了一個這樣的正方形(如圖3).她發現如果再多畫一些這樣的正方形,就能發現這些點C位置的排列圖形,根據這個圖形就能畫出滿足條件的正方形了.
(1)請你也實驗一下,再多畫幾個這樣的正方形,猜想小麗發現這些點C排列的圖形是一條線段一條線段;
(2)請你參考上述思路,繼續解決問題:如果E,F兩點的坐標分別為E(6,0),F(4,3).
①當A1的坐標是(1,0)時,則C1的坐標是(74,34)(74,34);
②當A2的坐標是(2,0)時,則C2的坐標是(72,32)(72,32);
③結合(1)中猜想,求出正方形ABCD的頂點D的坐標,在圖3中畫出滿足條件的正方形ABCD.

7
4
3
4
7
4
3
4
7
2
3
2
7
2
3
2
【考點】四邊形綜合題.
【答案】一條線段;(,);(,)
7
4
3
4
7
2
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/20 5:0:1組卷:82引用:3難度:0.4
相似題
-
1.如圖,△AMN是邊長為2的等邊三角形,以AN,AM所在直線為邊的平行四邊形ABCD交MN于點E、F,且∠EAF=30°.
(1)當F、M重合時,求AD的長;
(2)當NE、FM滿足什么條件時,能使;32(NE+FM)=EF
(3)在(2)的條件下,求證:四邊形ABCD是菱形.發布:2025/5/26 2:30:2組卷:150引用:2難度:0.1 -
2.【探究發現】(1)如圖1,在四邊形ABCD中,對角線AC⊥BD,垂足是O,求證:AB2+CD2=AD2+BC2.
【拓展遷移】(2)如圖2,以三角形ABC的邊AB、AC為邊向外作正方形ABDE和正方形ACFG,求證:CE⊥BG.
(3)如圖3,在(2)小題條件不變的情況下,連接GE,若∠EGA=90°,GE=6,AG=8,求BC的長.發布:2025/5/26 2:30:2組卷:957引用:6難度:0.3 -
3.問題情境:
在數學課上,老師給出了這樣一道題:如圖1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的長.
探究發現:
(1)如圖2,勤奮小組經過思考后發現:把△ABC繞點A順時針旋轉90°得到△ADE,連接BD,BE,利用直角三角形的性質可求BC的長,其解法如下:
過點B作BH⊥DE交DE的延長線于點H,則BC=DE=DH-HE.
△ABC繞點A順時針旋轉90°得到△ADE,AB=AC=6,∠BAC=30°∴……
請你根據勤奮小組的思路,完成求解過程.
拓展延伸:
(2)如圖3,縝密小組的同學在勤奮小組的啟發下,把△ABC繞點A順時針旋轉120°后得到△ADE,連接BD,CE交于點F,交AB于點G,請你判斷四邊形ADFC的形狀并證明;
(3)奇異小組的同學把圖3中的△BGF繞點B順時針旋轉,在旋轉過程中,連接AF,發現AF的長度不斷變化,直接寫出AF的最大值和最小值.發布:2025/5/26 3:0:2組卷:83引用:1難度:0.3