綜合與實踐
【問題情境]
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=6,AC=4,求BC邊上的中線AD的取值范圍.
小明在組內和同學們合作交流后,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據是 CC;
A.SSS B.AAS C.SAS D.HL
(2)由“三角形的三邊關系”,可求得AD的取值范圍是 1<AD<51<AD<5.
解后反思:題目中出現“中點”“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
[初步運用]
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
[靈活運用]
(4)如圖3,在△ABC中,∠A=90°,D為BC中點,DE⊥DF,DE交AB于點E,DF交 AC于點F,連接EF,試猜想線段BE、CF、EF三者之間的等量關系,直接寫出你的結論.

【考點】三角形綜合題.
【答案】C;1<AD<5
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:318引用:5難度:0.2
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數式表示)
(2)當△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數關系式.發布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發,均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數關系式.
(2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結論.發布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發,沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發,當點P到達A點時,P,Q兩點同時停止運動.設點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發布:2025/6/25 5:0:1組卷:191引用:3難度:0.4
相關試卷