某數學興趣小組在活動時,老師提出了這樣一個問題:如圖1,在△ABC中,AB=6,AC=8,D是BC的中點,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,請補充完整證明“△ABD≌△ECD”的推理過程.

(1)求證:△ABD≌△ECD;
證明:延長AD到點E,使DE=AD,
在△ABD和△ECD中,
∴AD=ED(已作),
∠ADB=∠EDC( 對頂角相等對頂角相等),
CD=BDBD(中點定義),
∴△ABD≌△ECD( SASSAS).
(2)由(1)的結論,根據AD與AE之間的關系,探究得出AD的取值范圍是 1<AD<71<AD<7;
(3)【感悟】解題時,條件中若出現“中點”“中線”等字樣,可以考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
【問題解決】如圖2中,∠B=90°,AB=2,AD是△ABC的中線,CE⊥BC,CE=4,且∠ADE=90°,求AE的長.
【考點】三角形綜合題.
【答案】對頂角相等;BD;SAS;1<AD<7
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/31 15:0:9組卷:182引用:4難度:0.3
相似題
-
1.如圖1和圖2,AD是△ABC中BC邊上的中線,E為AC邊上的一點,過點B作BF∥AC交ED的延長線于點F.
(1)求證:△BDF≌△CDE;
(2)如圖1,若CE=10,AE:BF=2:5,試求AC的長;
(3)如圖2,當E為AC邊的中點時,若△ABC的面積為20,請直接寫出△BDF的面積是多少.發布:2025/6/8 15:30:1組卷:23引用:1難度:0.4 -
2.如圖,在長方形ABCD中,AB=8,AD=4.P是BC的中點,點Q從點A出發,以每秒2個單位長度的速度沿A→D→C→B→A的方向向終點A運動,設點Q運動的時間為x秒.
(1)點Q在運動的路線上和點C之間的距離為4時,x=秒.
(2)若△DPQ的面積為S,用含x的代數式表示S(0≤x<7).
(3)若點Q從A出發3秒后,點M以每秒6個單位長度的速度沿A→B→C→D的方向運動,M點運動到達D點后立即沿著原路原速返回到A點,當M與Q在運動的路線上相距不超過4時,請直接寫出相應x的取值范圍.發布:2025/6/8 18:0:1組卷:139引用:1難度:0.2 -
3.如圖1,在平面直角坐標系中,A(a,0),C(b,4),且滿足(a+4)2+
=0,過C作CB⊥x軸于B.b-4
(1)求三角形ABC的面積.
(2)若線段AC交y軸于Q(0,2),在y軸上是否存在點P,使得S△ABC=S△QCP,若存在,求出P的坐標;若不存在,請說明理由.
(3)若過B作BD∥AC交y軸于D,且AE、DE平分∠CAB、∠ODB,如圖2,則∠AED與∠CAB、∠ODB有什么關系,并加以證明.發布:2025/6/8 17:0:2組卷:99引用:3難度:0.3