為了進一步探究三角形中線的作用,數學興趣小組合作交流時,小麗在組內做了如下嘗試:如圖1,在△ABC中,AD是BC邊上的中線,延長AD到M,使DM=AD,連接BM.

【探究發現】:(1)圖1中AC與BM的數量關系是 AC=BMAC=BM,位置關系是 AC∥BMAC∥BM;
【初步應用】:(2)如圖2,在△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.(提示:不等式的兩邊都乘或除以同一個正數,不等號的方向不變.例如:若3x<6,則x<2.)
【探究提升】:(3)如圖3,AD是△ABC的中線,過點A分別向外作AE⊥AB、AF⊥AC,使得AE=AB,AF=AC,延長DA交EF于點P,判斷線段EF與AD的數量關系和位置關系,請說明理由.
【考點】三角形綜合題.
【答案】AC=BM;AC∥BM
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:2600引用:10難度:0.2
相似題
-
1.如圖,在△ABC中,∠BAC=90°,AB=AC,點D在邊AC上,點E在線段BD上,連接AE,且AE=BE,延長AE交BC于點F,過點A作AG⊥AE交BD的延長線于點G.
(1)①若∠GBC=30°,則∠AEG=°;②如圖1,求證:∠AGB=2∠GBC;
(2)如圖2,連接CG,若∠BGC=90°,求證:BG平分∠ABC;
(3)如圖3,若AF=AG,求證:D是AC的中點.發布:2025/5/25 17:0:1組卷:201引用:1難度:0.3 -
2.已知:在△ABC中,AB=AC,∠BAC=120°,點F是線段BC上一點,D、E是射線AF上兩點,且∠ADB=∠BAC,∠AEC=60°.
(1)如圖1,
①填空:∠BAE ∠ACE;(填“>”或“=”或“<”)
②判定三條線段AD,BD,CE的數量關系,并說明理由;
(2)若∠DBC=15°,則直接寫出的值.FCBF發布:2025/5/25 17:30:1組卷:278引用:3難度:0.1 -
3.如圖①,在△ABC中,∠ABC=90°,過點B作直線BD交邊AC于點D,過點A作AE⊥BD,垂足為點E,過點C作CF⊥BD,垂足為點F,點O為AC的中點,連結OE、OF.
【證明推斷】求證:OE=OF.
小明給出的思路:先分別延長EO、CF交于點M,再證明△AEO≌△CMO.請你根據小明的思路完成證明過程.
【拓展應用】如圖②,當BC=4AB,∠DBC=45°時,解決下列問題:
(1)∠EFO的大小為 度.
(2)的值為 .ODOC發布:2025/5/25 18:0:1組卷:179引用:2難度:0.4