如圖,已知拋物線L3:y=2x2-8x+4與y軸交于點(diǎn)C,設(shè)點(diǎn)C關(guān)于L3的對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)為D.
(1)求L3的頂點(diǎn)坐標(biāo)和點(diǎn)D的坐標(biāo);
(2)如圖2,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B在拋物線L1上(點(diǎn)A,B不重合),我們把這樣的兩條拋物線L1,L2互稱(chēng)為“伴隨拋物線”.
①求以點(diǎn)D為頂點(diǎn)的L3的“伴隨拋物線”L4的函數(shù)解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
②將①中的L3和L4組成的圖形記為G.若直線y=kx將G上的整點(diǎn)(橫、縱坐標(biāo)都是整數(shù))平分,直接寫(xiě)出k的取值范圍.

L
3
:
y
=
2
x
2
-
8
x
+
4
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)L3的頂點(diǎn)坐標(biāo)為(2,-4),D(4,4);
(2)①2≤x≤4;
②-<k<.
(2)①2≤x≤4;
②-
2
3
2
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:140引用:4難度:0.1
相似題
-
1.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),P為y軸上的一個(gè)動(dòng)點(diǎn),已知A(-2,0)、C(0,-2
),且拋物線的對(duì)稱(chēng)軸是直線x=1.3
(1)求此二次函數(shù)的解析式;
(2)連接PB,則PC+PB的最小值是;12
(3)連接PA、PB,P點(diǎn)運(yùn)動(dòng)到何處時(shí),使得∠APB=60°,請(qǐng)求出P點(diǎn)坐標(biāo).發(fā)布:2025/5/24 5:0:1組卷:1948引用:7難度:0.2 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點(diǎn),點(diǎn)P是拋物線在第四象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點(diǎn)Q.12
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)PG+PQ取得最大值時(shí),求點(diǎn)P的坐標(biāo)和2PG+PQ的最大值;2
(3)將拋物線向右平移個(gè)單位得到新拋物線,M為新拋物線對(duì)稱(chēng)軸上的一點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn).當(dāng)(2)中134PG+PQ最大時(shí),直接寫(xiě)出所有使得以點(diǎn)A,P,M,N為頂點(diǎn)的四邊形是菱形的點(diǎn)N的坐標(biāo),并把求其中一個(gè)點(diǎn)N的坐標(biāo)的過(guò)程寫(xiě)出來(lái).2發(fā)布:2025/5/24 5:0:1組卷:1765引用:4難度:0.3 -
3.如圖1,拋物線y=ax2+bx+3與x軸交于點(diǎn)A(-1,0)、點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)D的橫坐標(biāo)為1,對(duì)稱(chēng)軸交x軸交于點(diǎn)E,交BC與點(diǎn)F.
(1)求頂點(diǎn)D的坐標(biāo);
(2)如圖2所示,過(guò)點(diǎn)C的直線交直線BD于點(diǎn)M,交拋物線于點(diǎn)N.
①若直線CM將△BCD分成的兩部分面積之比為2:1,求點(diǎn)M的坐標(biāo);
②若∠NCB=∠DBC,求點(diǎn)N的坐標(biāo).發(fā)布:2025/5/24 5:0:1組卷:1106引用:5難度:0.5
相關(guān)試卷