如圖,在平面直角坐標系中,拋物線y=ax2+bx+2與x軸的兩交點分別是A(-1,0),B(4,0),與y軸交于點C,連接BC.
(1)求該拋物線的解析式;
(2)點P為直線BC上方拋物線上的點,過P作PE⊥AB于點E,交BC于點D,F為射線DC上的點,連接PF,且∠FPD=∠FDP,求PF+PD的最大值,以及此時點P的坐標;
(3)在(2)的條件下,將拋物線y=ax2+bx+2沿射線BC方向平移5個單位長度,平移后的拋物線與y軸交于點Q,點M為平移后拋物線對稱軸上的點,N為平面內一點,直接寫出所有使得以點P,Q,M,N為頂點的四邊形為菱形的點N的坐標.

5
【考點】二次函數綜合題.
【答案】(1)拋物線的解析式為y=-x2+x+2;
(2)PF+PD的最大值為+2,此時P(2,3);
(3)點N的坐標為(,)或(,)或(,).
1
2
3
2
(2)PF+PD的最大值為
5
(3)點N的坐標為(
5
2
13
2
3
2
6
+
19
2
3
2
6
-
19
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/22 8:30:1組卷:511引用:3難度:0.3
相似題
-
1.已知拋物線y=ax2+bx+3的圖象與x軸相交于點A和點B(1,0),與y軸交于點C,連接AC,有一動點D在線段AC上運動,過點D作x軸的垂線,交拋物線于點E,交x軸于點F,AB=4,設點D的橫坐標為m.
(1)求拋物線的解析式;
(2)連接AE、CE,當△ACE的面積最大時,點D的坐標是 ;
(3)當m=-2時,在平面內是否存在點Q,使以B,C,E,Q為頂點的四邊形為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.發布:2025/5/22 12:0:1組卷:490引用:3難度:0.2 -
2.如圖,拋物線C1:y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)直接寫出拋物線C1的解析式;
(2)如圖(1),有一寬度為1的直尺平行于y軸,在點O,B之間平行移動,直尺兩長邊被線段BC和拋物線C1截得兩線段DE,FG.設點D的橫坐標為t,且0<t<2,試比較線段DE與FG的大小;
(3)如圖(2),將拋物線C1平移得到頂點為原點的拋物線C2,M是x軸正半軸上一動點,N(0,3).經過點M的直線PQ交拋物線C2于P,Q兩點.當點M運動到某一個位置時,存在唯一的一條直線PQ,使∠PNQ=90°,求點M的坐標.發布:2025/5/22 12:0:1組卷:589引用:3難度:0.2 -
3.在平面直角坐標系xOy中,已知拋物線y=-x2+bx+c經過點A(-3,0)、B(1,0),與y軸交于點C,拋物線的頂點為D.
(1)求二次函數的解析式和頂點D的坐標;
(2)聯結AC,試判斷△ACD與△BOC是否相似,并說明理由;
(3)將拋物線平移,使新拋物線的頂點E落在線段OC上,新拋物線與原拋物線的對稱軸交于點F,聯結EF,如果四邊形CEFD的面積為3,求新拋物線的表達式.發布:2025/5/22 12:0:1組卷:450引用:1難度:0.4
相關試卷