已知數(shù)列{an}的各項均為正數(shù),給定正整數(shù)k,若對任意的n∈N*且n>k,都有an-kan-k+1…an-1an+1…an+k-1an+k=a2kn成立,則稱數(shù)列{an}具有性質(zhì)T(k).
(1)若數(shù)列{an}具有性質(zhì)T(1),且a1=1,a3=9,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}既具有性質(zhì)T(2),又具有性質(zhì)T(3);證明:數(shù)列{an}是等比數(shù)列.
a
2
k
n
【答案】(1)an=
其中k∈N;(2)證明見解答.
1 , n = 6 k + 1 或 n = 6 k + 4 , |
9 , n = 6 k + 2 , 或 n = 6 k + 3 , |
1 9 , n = 6 k + 5 , 或 6 k + 6 |
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/13 11:0:2組卷:23引用:1難度:0.5
相似題
-
1.設(shè)a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( ?。?/h2>
A.當(dāng)b= 時,a10>1012B.當(dāng)b= 時,a10>1014C.當(dāng)b=-2時,a10>10 D.當(dāng)b=-4時,a10>10 發(fā)布:2024/12/29 12:30:1組卷:3298引用:9難度:0.4 -
2.設(shè)Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( ?。?/h2>a1=65A. 265B. 465C.10 D. 565發(fā)布:2024/12/29 11:0:2組卷:158引用:4難度:0.7 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:150引用:11難度:0.3