試卷征集
          加入會員
          操作視頻

          如圖,在Rt△ABC中,∠BCA=90°,AC=6cm,BC=8cm.點P從點A出發,沿AB方向以每秒2cm速度向終點B運動,同時動點Q從點B出發,沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P’.設點Q運動的時間為t秒.
          (1)若△ACP的面積為y,請用t表示y;
          (2)t為何值時,△BPQ與△ABC相似?
          (3)t為何值時,四邊形QPCP’為菱形?

          【考點】相似形綜合題
          【答案】(1)y=
          24
          t
          5

          (2)當t為
          40
          13
          25
          7
          時,△BPQ與△ABC相似;
          (3)若四邊形QPCP′為菱形,則t的值為
          40
          21
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:405引用:3難度:0.2
          相似題
          • 1.如圖,在△ABC中,∠ACB=90°,AC=BC=1,E,F是線段AB上的兩個動點,且∠ECF=45°,過點E,F分別作BC,AC的垂線相交于點M,垂足分別為H,G.有以下結論:①AB=
            2
            ;②當點E與點B重合時,MH=
            1
            2
            ;③△ACE∽△BFC;④AF+BE=EF.其中正確的結論有(  )

            發布:2025/6/3 15:0:1組卷:1604引用:6難度:0.4
          • 2.【基礎鞏固】

            (1)如圖1,在△ABC中,D為AB上一點,∠ACD=∠B.求證:AC2=AD?AB.
            【嘗試應用】
            (2)如圖2,在平行四邊形ABCD中,E為BC上一點,F為CD延長線上一點.∠BFE=∠A,若BF=6,BE=4,求AD的長.
            【拓展提高】
            (3)如圖3,在菱形ABCD中,E是AB上一點,F是△ABC內一點.EF∥AC,AC=2EF,∠EDF=
            1
            2
            ∠BAD直接寫出線段DE與線段EF之間的數量關系.

            發布:2025/6/3 12:0:1組卷:590引用:7難度:0.4
          • 3.在△EFG中,∠EFG=90°,EF=FG,且點E,F分別在矩形ABCD的邊AB,AD上,AB=8,AD=6.

            (1)如圖1,當點G在CD上時,求AE+DG的值;
            (2)如圖2,FG與CD相交于點N,連接EN,當EF平分∠AEN時,求證:EN=AE+DN;
            (3)如圖3,EG,FG分別交CD于點M,N,當MG2=MN?MD時,求AE的值.

            發布:2025/6/2 22:30:1組卷:199引用:2難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正