在△ABC中,B在C的左邊,BA=BC=3,將△ABC關于AC作軸對稱,得四邊形ABCD.P是對角線AC上的動點,E是直線BC上的動點,且PE=PB.

(1)四邊形ABCD如圖1所示,四邊形ABCD是 菱形菱形(填“矩形”或“菱形”或“正方形”);∠DPE ==∠ABC(填“=”或“≠”);
(2)四邊形ABCD如圖2所示,且∠ABC=90°,四邊形ABCD是 正方形正方形(填“矩形”或“菱形”或“正方形”);(1)中∠DPE與∠ABC之間的數量關系還成立嗎?若成立,請說明理由.
(3)四邊形ABCD如圖3所示,若∠ACB=α,∠PEB=β,請直接寫出∠DPB的度數.(用含α、β的代數式表示)
【考點】四邊形綜合題.
【答案】菱形;=;正方形
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/10 8:0:8組卷:43引用:4難度:0.5
相似題
-
1.如圖,在平面直角坐標系中,直線AB交兩坐標軸于A、B兩點,OA>OB,且OA、OB的長分別是一元二次方程x2-7x+12=0的兩根.
(1)求cos∠ABO的值;
(2)以線段AB的長為邊作正方形ABCD(如圖所示),對角線AC、BD交于點E,∠CBD的平分線BF交AC于F,求CF的長;
(3)若點M是y軸上任一點,點N是坐標平面內一點,若以A、B、M、N為頂點的四邊形是菱形,請直接寫出N點的坐標.發布:2025/6/2 12:0:1組卷:218引用:3難度:0.1 -
2.四邊形ABCD為正方形,邊長為6,點M為對角線BD上一動點(不與點B,D重合),連接CM,過點M作MN⊥CM,交射線AB于點N.
(1)如圖1,求證:MC=MN;
(2)如圖2,作射線CN交射線DB于點P.
①當點N在邊AB上時,設BN的長為x,△CMN的面積為y,求y關于x的函數解析式;
②當BN=3時,請直接寫出MP的長.發布:2025/6/2 13:0:2組卷:207引用:4難度:0.2 -
3.如圖,在平面直角坐標系中,已知矩形OABC的頂點A在x軸上,頂點C在y軸上,OA=8,OC=4,點P為對角線AC上一動點,過點P作PQ⊥PB,PQ交x軸于點Q.
(1)tan∠ACB=;
(2)在點P從點C運動到點A的過程中,的值是否發生變化?如果變化,請求出其變化范圍;如果不變,請求出其值;PQPB
(3)若將△QAB沿直線BQ折疊后,點A與點P重合,求PC的長.發布:2025/6/2 13:30:2組卷:504引用:2難度:0.4