在平面直角坐標(biāo)系中,Rt△ABC,∠ACB=90°,AB∥x軸,如圖1,C(1,0),且OC:OA=AC:BC=1:2.
(1)A點(diǎn)坐標(biāo)為(0,2)(0,2),B點(diǎn)坐標(biāo)為(5,2)(5,2);
(2)求過A、B、C三點(diǎn)的拋物線表達(dá)式;
(3)如圖2,拋物線對(duì)稱軸與AB交于點(diǎn)D,現(xiàn)有一點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一點(diǎn)Q從點(diǎn)D與點(diǎn)P同時(shí)出發(fā),以每秒5個(gè)單位在拋物線對(duì)稱軸上運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),問點(diǎn)P、Q運(yùn)動(dòng)到何處時(shí),△PQB面積最大,試求出最大面積.

【考點(diǎn)】二次函數(shù)綜合題.
【答案】(0,2);(5,2)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:662引用:3難度:0.1
相似題
-
1.在平面直角坐標(biāo)系中,規(guī)定:拋物線y=a(x-h)2+k的關(guān)聯(lián)直線為y=a(x-h)+k.例如拋物線y=2(x+1)2-3的關(guān)聯(lián)直線為y=2(x+1)-3,即y=2x-1.
(1)如圖,對(duì)于拋物線y=-(x-1)2+3.
①該拋物線的頂點(diǎn)坐標(biāo)為 ,關(guān)聯(lián)直線為 .
②求該拋物線與關(guān)聯(lián)直線的交點(diǎn).
(2)點(diǎn)P是拋物線y=-(x-1)2+3上一點(diǎn),過點(diǎn)P的直線PQ垂直于x軸,交拋物線y=-(x-1)2+3的關(guān)聯(lián)直線于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段PQ的長(zhǎng)度為d(d>0),求d與m的函數(shù)關(guān)系式.發(fā)布:2025/6/20 10:30:1組卷:16引用:1難度:0.6 -
2.在平面直角坐標(biāo)系中,將函數(shù)y=-x2+2mx-m2+3m+1(m為常數(shù))的圖象記為G.
(1)若拋物線經(jīng)過(1,0)點(diǎn),m的值為 .
(2)當(dāng)拋物線的頂點(diǎn)在第二象限時(shí),求m的取值范圍.
(3)當(dāng)圖象G在x≤m的部分的最高點(diǎn)與x軸距離為1,求m的值.12
(4)已知△EFG三個(gè)頂點(diǎn)的坐標(biāo)分別為E(0,2),F(xiàn)(0,-1),G(2,2).當(dāng)拋物線在△EFG內(nèi)部的部分所對(duì)應(yīng)的函數(shù)值y隨x的增大而減小時(shí),直接寫出m的取值范圍.發(fā)布:2025/6/20 10:30:1組卷:36引用:1難度:0.2 -
3.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C.
(1)b=,c=;
(2)若點(diǎn)D在該二次函數(shù)的圖象上,且S△ABD=2S△ABC,求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是該二次函數(shù)圖象上位于x軸上方的一點(diǎn),且S△APC=S△APB,直接寫出點(diǎn)P的坐標(biāo).發(fā)布:2025/6/20 10:30:1組卷:2740引用:10難度:0.3
相關(guān)試卷