等差數列{an}中,公差為d,前n項的和為Sn,有如下性質:
(1)通項an=am+(n-m)d;
(2)若m+n=p+q,m、n、p、q∈N*,則am+an=ap+aq;
(3)若m+n=2p,則am+an=2ap;
(4)Sn,S2n-Sn,S3n-S2n構成等差數列.
請類比出等比數列的有關性質.
【考點】類比推理.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:31引用:2難度:0.7
相似題
-
1.已知
tan(x+π4)=1+tanx1-tanx,那么函數y=tanx的周期為π.類比可推出:已知x∈R且(x≠kπ+π4),那么函數y=f(x)的周期是( )f(x+π)=1+f(x)1-f(x)A.π B.2π C.4π D.5π 發布:2025/1/6 8:0:1組卷:11引用:1難度:0.7 -
2.閱讀下表后,請應用類比的思想,得出橢圓中的結論:
圓 橢圓 定
義平面上到動點P到定點O的距離等于定長的點的軌跡 平面上的動點P到兩定點F1,F2的距離之和等于定值2a的點的軌跡(2a>|F1F2|) 結
論如圖,AB是圓O的直徑,直線AC,BD是圓O過A,B的切線,P是圓O上任意一點,
CD是過P的切線,則有“PO2=PC?PD”橢圓的長軸為AB,O是橢圓的中心,F1,F2是橢圓的焦點,直線AC,BD是橢圓過A,B的切線,P是橢圓上任意一點,CD是過P的切線,則有 發布:2025/1/28 8:0:2組卷:32引用:2難度:0.5 -
3.若
,x≠kπ+π4,則y=tanx的周期為π.類比可推出:設x∈R且tan(x+π4)=1+tanx1-tanx,則y=f(x)的周期是( )f(x+π)=1+f(x)1-f(x)A.π B.2π C.4π D.5π 發布:2025/1/6 8:0:1組卷:36引用:1難度:0.5