某超市隨機選取1000位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統計表,其中“√”表示購買,“×”表示未購買.
甲 | 乙 | 丙 | 丁 | |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
(2)估計顧客在甲、乙、丙、丁中同時購買3種商品的概率;
(3)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中哪種商品的可能性最大?
【考點】相互獨立事件和相互獨立事件的概率乘法公式.
【答案】(1)0.2.
(2)0.3.
(3)同時購買甲和丙的概率最大.
(2)0.3.
(3)同時購買甲和丙的概率最大.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:2207引用:13難度:0.5
相似題
-
1.甲、乙兩人進行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局數多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( )12A. P(2)=18B. P(3)=1132C. P(n)=12(1-Cn2n22n)D.P(n)的最大值為 14發布:2024/12/29 12:0:2組卷:254引用:6難度:0.6 -
2.小王同學進行投籃練習,若他第1球投進,則第2球投進的概率為
;若他第1球投不進,則第2球投進的概率為23.若他第1球投進概率為13,他第2球投進的概率為( )23A. 59B. 23C. 79D. 83發布:2024/12/29 12:0:2組卷:305引用:5難度:0.7 -
3.某市在市民中發起了無償獻血活動,假設每個獻血者到達采血站是隨機的,并且每個獻血者到達采血站和其他的獻血者到達采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內有10位獻血者到達采血站獻血,用隨機模擬的方法來估計一下,這10位獻血者中至少有4位的血型是O型的概率.
發布:2024/12/29 11:0:2組卷:1引用:1難度:0.7