試卷征集
          加入會員
          操作視頻

          如圖,拋物線y=ax2+bx+c經過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
          (1)求拋物線的函數解析式;
          (2)在拋物線的對稱軸上確定一點P,使PA+PC的值最小,求點P的坐標;
          (3)在直線l上是否存在點M,使△MAC為等腰三角形,若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

          【考點】二次函數綜合題
          【答案】(1)拋物線的函數解析式為y=-x2+2x+3;
          (2)P(1,2);
          (3)M的坐標為(1,
          6
          )或(1,-
          6
          )或(1,0)或(1,1).
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2025/5/31 11:30:1組卷:376引用:1難度:0.2
          相似題
          • 1.如圖,拋物線y=x2+bx+c與x軸交于A,B兩點,其中點A的坐標為(-3,0),與y軸交于點C,點D(-2,-3)在拋物線上.
            (1)求拋物線的解析式;
            (2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
            (3)若拋物線上有一動點Q,使△ABQ的面積為6,求點Q的坐標.

            發布:2025/6/1 17:30:1組卷:280引用:4難度:0.3
          • 2.如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(
            1
            2
            5
            2
            )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
            (1)求拋物線的解析式;
            (2)如果設點P的坐標為(n,n+2),則點C的坐標可表示為

            (3)在(2)的條件下,請用含有n的式子表示PC的長,并確定PC長度的最大值.

            發布:2025/6/1 18:30:1組卷:612引用:3難度:0.3
          • 3.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
            (1)求此拋物線的解析式;
            (2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
            (3)若點Q在y軸上,點G為該拋物線的頂點,且∠AQG=45°,求點Q的坐標.

            發布:2025/6/1 16:30:1組卷:323引用:1難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正