如圖1,在矩形ABCD中,AD=4,點(diǎn)O為BC的中點(diǎn),將△DCO沿DO翻折至△DGO,直線DG分別交直線BC,直線AB于點(diǎn)E,F(xiàn),連接BG.
(1)試判斷BG與OD的位置關(guān)系,并說明理由.
(2)如圖2,連接AC分別交DE,OD于點(diǎn)H,I,若AC⊥DE,
①求證:OB=2BE.
②求DI的長.
(3)設(shè)直線BG交AD于點(diǎn)K,連接OK,記△ODK的面積為S1,△BOG的面積為S2,連接OF,當(dāng)△DOF中有一個內(nèi)角的正切值為12時,求S1S2的值.

1
2
S
1
S
2
【考點(diǎn)】四邊形綜合題.
【答案】(1)GB∥OD;
(2)①見解答;
②.
(2)①見解答;
②
S
1
S
2
=
5
2
或
5
8
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:406引用:4難度:0.5
相似題
-
1.綜合與實踐課上,老師讓同學(xué)們以“矩形的折疊”為主題開展教學(xué)探究活動.在矩形ABCD中,已知AB=6,BC=8,點(diǎn)P是邊AD上的一個動點(diǎn).
【操作判斷】
(1)如圖1,甲同學(xué)先將矩形ABCD對折,使得AD與BC重合,展開得到折痕EF.將矩形ABCD沿BP折疊,使A恰好落在EF上的M處,則線段AM與線段PB的位置關(guān)系為 ;∠MBC的度數(shù)為 ;
【遷移探究】
(2)如圖2,乙同學(xué)將矩形ABCD沿BP折疊,使A恰好落在矩形ABCD的對角線上,求此時AP的長;
【綜合應(yīng)用】
(3)如圖3,點(diǎn)Q在邊AB上運(yùn)動,且始終滿足PQ∥BD,以PQ為折疊,將△APQ翻折,求折疊后△APQ與△ABD重疊部分面積的最大值,并求出此時AP的長.發(fā)布:2025/5/23 0:30:1組卷:594引用:5難度:0.1 -
2.如圖,四邊形ABCD中,AB=BC,∠ABC=120°.連接BD,總有∠DBC=∠DAB+60°.
(1)求∠ADB的度數(shù);
(2)點(diǎn)F是線段CD的中點(diǎn),連接BF.
①寫出線段AD,BD,BF之間的數(shù)量關(guān)系,并給出證明;
②延長AD,BF相交于點(diǎn)N,連接CN,若,求線段CN長度的最小值.AB=23發(fā)布:2025/5/23 1:0:1組卷:457引用:1難度:0.1 -
3.綜合與實踐:情景再現(xiàn):我們動手操作:把正方形ABCD沿對角線剪開就分剪出兩個等腰直角三角形,把其中一個等腰直角三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當(dāng)圖形旋轉(zhuǎn)時問題也隨旋轉(zhuǎn)應(yīng)運(yùn)而生.如圖①把正方形ABCD沿對角線剪開,得兩個等腰直角三角形△ACD和△BCE.
(1)問題呈現(xiàn),我們把剪下的兩個三角形一個放大另一個縮小拼成如圖②所示的圖形,①若點(diǎn)P是平面內(nèi)一動點(diǎn),AB=3,PA=1,則線段PB的取值范圍是 ;②直接寫出線段AE與DB的關(guān)系是 ;
(2)我們把剪下的其中一個三角形放大與正方形組合如圖③④⑤所示,點(diǎn)E在直線BC上,F(xiàn)M⊥CD交直線CD于M.①當(dāng)點(diǎn)E在BC上時,如圖③所示,求證:AD=MF+CE;②當(dāng)點(diǎn)E在BC的延長線時,如圖④所示,則線段AD、MF、CE具有的數(shù)量關(guān)系為 ;當(dāng)點(diǎn)E在CB的延長線上時,如圖⑤所示,則線段AD、MF、CE具有的數(shù)量關(guān)系為 ;
(3)在(2)的條件下,連接EM,當(dāng),其他條件不變,則線段CE的長為 .S△EMF=8,AF2=50發(fā)布:2025/5/23 1:0:1組卷:158引用:2難度:0.3