試卷征集
          加入會員
          操作視頻

          已知二次函數C1:y=kx2-2kx+3(k≠0).
          (1)有關二次函數C1的圖象與性質,下列結論中正確的有
          ①②③
          ①②③
          (填序號);
          ①二次函數C1的圖象的對稱軸是直線x=1;
          ②二次函數C1的最小值為3-k;
          ③二次函數C1的圖象經過定點(0,3)和(2,3);
          ④函數值y隨著x的增加而減小.
          (2)當k=1時.
          ①拋物線C1的頂點坐標為
          (1,-4)
          (1,-4)

          ②將拋物線C1沿x軸翻折得到拋物線C2,則拋物線C2的表達式為
          y=-x2+2x+3
          y=-x2+2x+3

          (3)設拋物線C1與y軸相交于點E,過點E作直線l∥x軸,與拋物線C1的另一交點為F,將拋物線C1沿直線l翻折,得到拋物線C3,拋物線C1,C3的頂點分別記為P,Q.是否存在實數k,使得以點E,F,P,Q為頂點的四邊形為正方形?若存在,請求出k的值;若不存在,請說明理由.

          【考點】二次函數綜合題
          【答案】①②③;(1,-4);y=-x2+2x+3
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/10/9 18:0:1組卷:92引用:1難度:0.5
          相似題
          • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
            (1)求該拋物線的解析式;
            (2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
            (3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
            ①m取何值時,過點P、M、N、F的平面圖形不是梯形?
            ②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.

            發布:2025/1/2 8:0:1組卷:83引用:1難度:0.5
          • 2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為

            發布:2024/12/23 17:30:9組卷:3894引用:38難度:0.4
          • 3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
            5
            ,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-4
            5
            ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是(  )

            發布:2024/12/26 1:30:3組卷:2684引用:7難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正