如圖1,在正方形ABCD中,點E是CD上一動點,將正方形沿著BE折疊,點C落在點F處,連結BE,CF,延長CF交AD于點G.
(1)求證:△BCE≌△CDG;
(2)如圖2,延長BF交AD于點H.若HDHF=45,CE=9,求線段DE的長;
(3)將正方形改成矩形,同樣沿著BE折疊,連結CF,延長CF,BF交直線AD于G,H兩點,若ABBC=k,HDHF=45,求DEEC的值(用含k的代數式表示).

HD
HF
=
4
5
AB
BC
=
k
HD
HF
=
4
5
DE
EC
【考點】四邊形綜合題.
【答案】(1)證明見解析部分.
(2)DE=3.
(3)=或.
(2)DE=3
10
(3)
DE
EC
k
2
+
9
3
9
k
2
+
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:508引用:5難度:0.1
相似題
-
1.綜合與實踐課上,老師讓同學們以“矩形的折疊”為主題開展教學探究活動.在矩形ABCD中,已知AB=6,BC=8,點P是邊AD上的一個動點.
【操作判斷】
(1)如圖1,甲同學先將矩形ABCD對折,使得AD與BC重合,展開得到折痕EF.將矩形ABCD沿BP折疊,使A恰好落在EF上的M處,則線段AM與線段PB的位置關系為 ;∠MBC的度數為 ;
【遷移探究】
(2)如圖2,乙同學將矩形ABCD沿BP折疊,使A恰好落在矩形ABCD的對角線上,求此時AP的長;
【綜合應用】
(3)如圖3,點Q在邊AB上運動,且始終滿足PQ∥BD,以PQ為折疊,將△APQ翻折,求折疊后△APQ與△ABD重疊部分面積的最大值,并求出此時AP的長.發布:2025/5/23 0:30:1組卷:594引用:5難度:0.1 -
2.如圖,四邊形ABCD中,AB=BC,∠ABC=120°.連接BD,總有∠DBC=∠DAB+60°.
(1)求∠ADB的度數;
(2)點F是線段CD的中點,連接BF.
①寫出線段AD,BD,BF之間的數量關系,并給出證明;
②延長AD,BF相交于點N,連接CN,若,求線段CN長度的最小值.AB=23發布:2025/5/23 1:0:1組卷:457引用:1難度:0.1 -
3.綜合與實踐:情景再現:我們動手操作:把正方形ABCD沿對角線剪開就分剪出兩個等腰直角三角形,把其中一個等腰直角三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當圖形旋轉時問題也隨旋轉應運而生.如圖①把正方形ABCD沿對角線剪開,得兩個等腰直角三角形△ACD和△BCE.
(1)問題呈現,我們把剪下的兩個三角形一個放大另一個縮小拼成如圖②所示的圖形,①若點P是平面內一動點,AB=3,PA=1,則線段PB的取值范圍是 ;②直接寫出線段AE與DB的關系是 ;
(2)我們把剪下的其中一個三角形放大與正方形組合如圖③④⑤所示,點E在直線BC上,FM⊥CD交直線CD于M.①當點E在BC上時,如圖③所示,求證:AD=MF+CE;②當點E在BC的延長線時,如圖④所示,則線段AD、MF、CE具有的數量關系為 ;當點E在CB的延長線上時,如圖⑤所示,則線段AD、MF、CE具有的數量關系為 ;
(3)在(2)的條件下,連接EM,當,其他條件不變,則線段CE的長為 .S△EMF=8,AF2=50發布:2025/5/23 1:0:1組卷:158引用:2難度:0.3