某數學興趣小組對線段上的動點問題進行探究,已知AB=8.
問題思考:
如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側作正方形APDC、BPEF.
(1)分別連接AD、DF、AF,AF交DP于點K,當點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.
問題拓展:
(2)如圖2,若點M、N是線段AB上的兩點,且AM=BN=1,點G、H分別是邊CD、EF的中點,請直接寫出點P從M到N的運動過程中,GH的中點O所經過的路徑的長及OM+ON的最小值.

【考點】三角形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:487引用:1難度:0.1
相似題
-
1.閱讀材料,解決問題.
相傳古希臘畢達哥拉斯學派的數學家經常在沙灘上研究數學問題.他們在沙灘上畫點或用小石子來表示數,比如,他們研究過1、3、6、10…,由于這些數可以用圖中所示的三角點陣表示,他們就將每個三角點陣中所有的點數和稱為三角數.
則第n個三角數可以用1+2+3+…+(n-2)+(n-1)+n=(n≥1且為整數)來表示.n(n+1)2
(1)若三角數是55,則n=;
(2)把第n個三角點陣中各行的點數依次換為2,4,6,…,2n,…,請用含n的式子表示前n行所有點數的和;
(3)在(2)中的三角點陣中前n行的點數的和能為120嗎?如果能,求出n,如果不能,請說明理由.發布:2025/5/22 2:0:8組卷:122引用:4難度:0.4 -
2.在△ABC中,BD⊥AC,E為AB邊中點,連接CE,BD與CE相交于點F,過E作EM⊥EF,交BD于點M,連接CM.
(1)依題意補全圖形;
(2)求證:∠EMF=∠ACF;
(3)判斷BM、CM、AC的數量關系,并證明.發布:2025/5/22 6:0:1組卷:1096引用:3難度:0.2 -
3.【初步感知】(1)如圖1,點A,B,C,D均在小正方形網格的格點上,則
=;tan∠BAC2
【問題解決】(2)求tan15°的值;
方案①:如圖2,在△ABC中,∠C=90°,∠BAC=30°,作AD平分∠BAC交BC于D;…
方案②:如圖3,在△ABC中,AB=AC,∠A=30°,過點B作BD⊥AC,垂足為D;…
請你選擇其中一種方案求出tan15°的值(結果保留根號);
【思維提升】(3)求sin18°的值;如圖4,在△ABC中,AB=AC,∠A=36°.求sin18°的值(結果保留根號).發布:2025/5/21 20:30:1組卷:350引用:4難度:0.1