在△ABC中,BD是AC邊上的高,AD=3,CD=2,BD=4,點M在AD上,且AM=2.動點P從點A出發,沿折線AB-BD以每秒1個單位長度的速度運動,連結PM,作點A關于直線PM的對稱點A′.設點P的運動時間為t秒(t>0).
(1)用含t的代數式表示線段BP的長;
(2)當點A′在△ABC內部時,求t的取值范圍;
(3)連結CP.當CP⊥AB時,求△BCP的面積;
(4)當MA′∥AB時,直接寫出t的值.
【考點】三角形綜合題.
【答案】(1)當0<t≤5時,BP=5-t.當5<t≤9時,BP=t-5;
(2)<t<;
(3)t=4或;
(4)t=2或.
(2)
6
5
10
3
(3)t=4或
5
2
(4)t=2或
17
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:109引用:2難度:0.1
相似題
-
1.如圖,△AOB中,OA=OB=6,將△AOB繞點O逆時針旋轉得到△COD.OC與AB交于點G,CD分別交OB、AB于點E、F.
(1)∠A與∠D的數量關系是:∠A ∠D;
(2)求證:△AOG≌△DOE;
(3)當A,O,D三點共線時,恰好OB⊥CD,求此時CD的長.發布:2025/5/25 10:0:1組卷:82引用:1難度:0.2 -
2.如圖,△ABC中,∠ACB=90°,CB=CA,CE⊥AB于E,點F是CE上一點,連接AF并延長交BC于點D,CG⊥AD于點G,連接EG.
(1)求證:CD2=DG?DA;
(2)如圖1,若點D是BC中點,求證:CF=2EF;
(3)如圖2,若GC=2,GE=2,求證:點F是CE中點.2發布:2025/5/25 11:0:2組卷:265引用:2難度:0.1 -
3.【閱讀理解】
截長補短法,是初中數學幾何題中一種輔助線的添加方法.截長就是在長邊上截取一條線段與某一短邊相等,補短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數量關系.
解題思路:延長DC到點E,使CE=BD,連接AE,根據∠BAC+∠BDC=180°,可證∠ABD=∠ACE易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數量關系.
根據上述解題思路,請直接寫出DA、DB、DC之間的數量關系是 ;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點D是邊BC下方一點,∠BDC=90°,探索線段DA、DB、DC之間的數量關系,并說明理由;
【知識應用】
(3)如圖3,兩塊斜邊長都為14cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點之間的距離PQ的長為 cm.發布:2025/5/25 9:0:1組卷:427引用:6難度:0.3