如圖所示,在矩形ABCD中,AB=CD=5,BC=AD=3,
(1)如圖①,E、F分別為CD、AB邊上的點,將矩形ABCD沿EF翻折,使點A與點C重合,設CE=x,則DE=5-x5-x(用含x的代數式表示),CD′=AD=3,在Rt△CD′E中,利用勾股定理列方程,可求得CE=175175.
(2)如圖②,將△ABD沿BD翻折至△A′BD,若A′B交CD于點E,求此時CE的長;
(3)如圖③,P為AD邊上的一點,將△ABP沿BP翻折至△A′BP,A′B、A′P分別交CD邊于E、F,且DF=A′F,請直接寫出此時CE的長.

17
5
17
5
【考點】四邊形綜合題.
【答案】5-x;
17
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/27 13:0:9組卷:1095引用:6難度:0.1
相似題
-
1.問題背景
定義:若兩個等腰三角形有公共底邊,且兩個頂角的和是180°,則稱這兩個三角形是關于這條底邊的互補三角形.如圖1,四邊形ABCD中,BC是一條對角線,AB=AC,DB=DC,且∠A+∠D=180°,則△ABC與△DBC是關于BC的互補三角形.
(1)初步思考:如圖2,在△ABC中,AB=AC,∠ABC=30°,D、E為△ABC外兩點,EB=EC,∠EBC=45°,△DBC為等邊三角形.則△ABC關于BC的互補三角形是 ,并說明理由.
(2)實踐應用:如圖3,在長方形ABCD中,AB=8,AD=10.點E在AB邊上,點F在AD邊上,若△BEF與△BCF是關于BF互補三角形,試求AE的長.
(3)思維探究:如圖4,在長方形ABCD中,AB=8,AD=10.點E是線段AB上的動點,點P是平面內一點,△BEP與△BCP是關于BP的互補三角形,直線CP與直線AD交于點F.在點E運動過程中,線段BE與線段AF的長度是否會相等?若相等,請直接寫出AE的長;若不相等,請說明理由.發布:2025/6/2 17:30:1組卷:304引用:5難度:0.3 -
2.如圖1,在正方形ABCD中,M、N分別為邊AB、AD上的點,連接CM、CN,且CM=CN.
(1)求證:△BMC≌△DNC;
(2)如圖2,若P是邊BC上的點,且NP⊥CM于O,連接OA,求證:OM+ON=OA;2
(3)如圖3,在滿足(2)的條件下,過O作OQ⊥BC于Q,若AM=2BM,求的值.OQCD發布:2025/6/2 16:0:1組卷:755引用:4難度:0.4 -
3.如圖,在平面直角坐標系中,已知矩形OABC的頂點A在x軸上,頂點C在y軸上,OA=8,OC=4,點P為對角線AC上一動點,過點P作PQ⊥PB,PQ交x軸于點Q.
(1)tan∠ACB=;
(2)在點P從點C運動到點A的過程中,的值是否發生變化?如果變化,請求出其變化范圍;如果不變,請求出其值;PQPB
(3)若將△QAB沿直線BQ折疊后,點A與點P重合,求PC的長.發布:2025/6/2 13:30:2組卷:504引用:2難度:0.4