試卷征集
          加入會員
          操作視頻

          閱讀與思考
          平移是初中幾何變換之一,它可以將線段和角平移到一個新的位置,從而把分散的條件集中到一起,使問題得以解決.平移包括以下三個方面的應用:一、分散的條件集中;二、復雜圖形變得簡單明了;三、轉化題目的形式.以下面例題來說明.
          如圖1,在正方形中ABCD中,E,F,G分別是BC,CD,AD上的點,GE⊥BF于點O,那么GE=BF.
          證明過程如下:
          ∵GE⊥BF于點O,
          ∴∠GOB=90°,
          過點A作AH∥GE交BC于點H,交BF于點M.
          ∴∠AMB=∠GOB=90°,
          ∴∠ABM+∠BAM=90°,
          ∵四邊形ABCD為正方形,
          ∴AG∥HE,AB=BC,∠ABC=∠C=90°,
          ∴∠ABM+∠FBC=∠ABC=90°,
          ∴∠BAM=∠FBC,
          ∴△ABH≌△BCF(依據1),
          ∴AH=BF,
          ∵AH∥GE,AG∥HE,
          ∴四邊形AHEG為平行四邊形(依據2),
          ∴AH=GE,
          ∴GE=BF.
          【閱讀理解】填空:上述閱讀材料中“依據1”是
          “ASA”
          “ASA”
          ,“依據2”是
          平行四邊形的定義
          平行四邊形的定義

          【遷移嘗試】如圖2,在5×6的正方形網格中,點A,B,C,D為格點,AB交CD于點M.則∠AMC的度數為
          45°
          45°

          【拓展應用】如圖3,點P是線段AB上的動點,分別以AP,BP為邊在AB的同側作正方形APCD與正方形PBEF,連接DE分別交線段BC,PC于點M,N.求∠DMC的度數.

          【考點】四邊形綜合題
          【答案】“ASA”;平行四邊形的定義;45°
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2025/5/26 9:0:1組卷:218引用:2難度:0.3
          相似題
          • 1.在平行四邊形ABCD中,M,N分別是邊AD,AB的點,AB=kAN,AD=kAM.
            (1)如圖1,若連接MN,BD,求證:MN∥BD;
            (2)如圖2,把△AMN繞點A順時針旋轉角度α(0°<α<90°)得到△AFE,M,N的對應點分別為點E,F,連接BE,若∠ABF=∠EBC,∠AEB=2∠DAE.
            ①直接寫出k的取值范圍;
            ②當tan∠EBC=
            1
            3
            時,求k的值.

            發布:2025/5/26 11:30:1組卷:207引用:3難度:0.2
          • 2.如圖,在四邊形ABCD中,AD∥BC,∠DAB=90°,AB=6cm,BC=8cm,AD=4cm.點P從點A出發沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發沿CA 向點A勻速運動,速度是1cm/s,當一個點到達終點,另一個點立即停止運動.連接PQ,BP,BQ,設運動時間為t(s),解答下列問題:
            (1)當t為何值時,PQ∥CD?
            (2)設△BPQ的面積為s(cm2),求s與t之間的函數關系式;
            (3)是否存在某一時刻t,使得△BPQ的面積為四邊形ABCD面積的
            1
            2
            ?若存在,求出此時t的值;若不存在,說明理由;
            (4)連接BD,是否存在某一時刻t,使得BP平分∠ABD?若存在,求出此時t的值;若不存在,說明理由.

            發布:2025/5/26 12:0:1組卷:399引用:2難度:0.1
          • 3.如圖,正方形ABCD中,在AD的延長線上取點E,F,使DE=AD,DF=BD,連接BF分別交CD,CE于H,G下列結論正確的有
             
            .(填序號)
            ①GD=GH;②EC=2DG;③S△CDG=S四邊形DHGE; ④圖中有7個等腰三角形.

            發布:2025/5/27 4:0:1組卷:172引用:1難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正