閱讀與思考
平移是初中幾何變換之一,它可以將線段和角平移到一個新的位置,從而把分散的條件集中到一起,使問題得以解決.平移包括以下三個方面的應用:一、分散的條件集中;二、復雜圖形變得簡單明了;三、轉化題目的形式.以下面例題來說明.
如圖1,在正方形中ABCD中,E,F,G分別是BC,CD,AD上的點,GE⊥BF于點O,那么GE=BF.
證明過程如下:
∵GE⊥BF于點O,
∴∠GOB=90°,
過點A作AH∥GE交BC于點H,交BF于點M.
∴∠AMB=∠GOB=90°,
∴∠ABM+∠BAM=90°,
∵四邊形ABCD為正方形,
∴AG∥HE,AB=BC,∠ABC=∠C=90°,
∴∠ABM+∠FBC=∠ABC=90°,
∴∠BAM=∠FBC,
∴△ABH≌△BCF(依據1),
∴AH=BF,
∵AH∥GE,AG∥HE,
∴四邊形AHEG為平行四邊形(依據2),
∴AH=GE,
∴GE=BF.
【閱讀理解】填空:上述閱讀材料中“依據1”是 “ASA”“ASA”,“依據2”是 平行四邊形的定義平行四邊形的定義.
【遷移嘗試】如圖2,在5×6的正方形網格中,點A,B,C,D為格點,AB交CD于點M.則∠AMC的度數為 45°45°;
【拓展應用】如圖3,點P是線段AB上的動點,分別以AP,BP為邊在AB的同側作正方形APCD與正方形PBEF,連接DE分別交線段BC,PC于點M,N.求∠DMC的度數.

【考點】四邊形綜合題.
【答案】“ASA”;平行四邊形的定義;45°
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/26 9:0:1組卷:218引用:2難度:0.3
相似題
-
1.在平行四邊形ABCD中,M,N分別是邊AD,AB的點,AB=kAN,AD=kAM.
(1)如圖1,若連接MN,BD,求證:MN∥BD;
(2)如圖2,把△AMN繞點A順時針旋轉角度α(0°<α<90°)得到△AFE,M,N的對應點分別為點E,F,連接BE,若∠ABF=∠EBC,∠AEB=2∠DAE.
①直接寫出k的取值范圍;
②當tan∠EBC=時,求k的值.13發布:2025/5/26 11:30:1組卷:207引用:3難度:0.2 -
2.如圖,在四邊形ABCD中,AD∥BC,∠DAB=90°,AB=6cm,BC=8cm,AD=4cm.點P從點A出發沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發沿CA 向點A勻速運動,速度是1cm/s,當一個點到達終點,另一個點立即停止運動.連接PQ,BP,BQ,設運動時間為t(s),解答下列問題:
(1)當t為何值時,PQ∥CD?
(2)設△BPQ的面積為s(cm2),求s與t之間的函數關系式;
(3)是否存在某一時刻t,使得△BPQ的面積為四邊形ABCD面積的?若存在,求出此時t的值;若不存在,說明理由;12
(4)連接BD,是否存在某一時刻t,使得BP平分∠ABD?若存在,求出此時t的值;若不存在,說明理由.發布:2025/5/26 12:0:1組卷:399引用:2難度:0.1 -
3.如圖,正方形ABCD中,在AD的延長線上取點E,F,使DE=AD,DF=BD,連接BF分別交CD,CE于H,G下列結論正確的有
①GD=GH;②EC=2DG;③S△CDG=S四邊形DHGE; ④圖中有7個等腰三角形.發布:2025/5/27 4:0:1組卷:172引用:1難度:0.5
相關試卷