一開(kāi)口向上拋物線與x軸交于A(m-2,0),B(m+2,0)兩點(diǎn),頂點(diǎn)C,且AC⊥BC.
(1)若m為常數(shù),求拋物線解析式.
(2)點(diǎn)Q在直線y=kx+1上移動(dòng),O為原點(diǎn),當(dāng)m=4時(shí),直線上只存在一個(gè)點(diǎn)Q使得∠OQB=90°,求此時(shí)直線解析式.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:64引用:1難度:0.5
相似題
-
1.在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+b與x軸負(fù)半軸相交于點(diǎn)A,與x軸正半軸相交于點(diǎn)B,與y軸正半軸相交于點(diǎn)C,AO=OC=6.
(1)求a,b的值;
(2)如圖1,點(diǎn)P為第一象限拋物線上一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,連接PO、PB,設(shè)△POB的面積為S,求S與t的函數(shù)關(guān)系式.(不要求寫(xiě)出自變量t的取值范圍);
(3)如圖2,在(2)的條件下,連接CP,過(guò)點(diǎn)P作PD⊥CP交y軸于點(diǎn)D,過(guò)點(diǎn)D作y軸的垂線交第二象限內(nèi)的拋物線于點(diǎn)Q,連接PQ,點(diǎn)F在y軸上,且在點(diǎn)C上方,點(diǎn)G為y軸負(fù)半軸上一點(diǎn),且CF=OG,連接AF、BG,點(diǎn)H在AF上,過(guò)點(diǎn)F作FM⊥y軸交OH延長(zhǎng)線于點(diǎn)M,OH=MH,點(diǎn)N為OC上一點(diǎn),連接NH,∠BGO+∠HNO=180°,連接AN,若AN∥PQ,求點(diǎn)Q的坐標(biāo).發(fā)布:2025/5/22 23:0:1組卷:167引用:1難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,A(-3,0),B(0,1),形狀相同的拋物線Cn(n=1,2,3,4,…)的頂點(diǎn)在直線AB上,其對(duì)稱軸與x軸的交點(diǎn)的橫坐標(biāo)依次為2,3,5,8,13,…,根據(jù)上述規(guī)律,拋物線C8的頂點(diǎn)坐標(biāo)為().
發(fā)布:2025/5/22 23:30:1組卷:2235引用:14難度:0.3 -
3.對(duì)于二次函數(shù)y=ax2+bx+c,規(guī)定函數(shù)y=
是它的相關(guān)函數(shù).已知點(diǎn)M,N的坐標(biāo)分別為(-ax2+bx+c(x≥0)-ax2-bx-c(x<0),1),(12,1),連接MN,若線段MN與二次函數(shù)y=-x2+4x+n的相關(guān)函數(shù)的圖象有兩個(gè)公共點(diǎn),則n的取值范圍為( ?。?/h2>92A.-3<n<-1或1<n≤ 54B.-3<n<-1或1≤n≤ 54C.n≤-1或1<n≤ 54D.-3<n<-1或n≥1 發(fā)布:2025/5/22 23:30:1組卷:1911引用:6難度:0.3