試卷征集
          加入會員
          操作視頻

          已知一元二次函數f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標為(c,0),且當0<x<c時,恒有f(x)>0.
          (1)求出不等式f(x)<0的解集(用a,c表示);
          (2)若以二次函數的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
          (3)若不等式m2-2km+1+b+ac≥0對所有k∈[-1,1]恒成立,求實數m的取值范圍.

          【答案】(1)
          c
          ,
          1
          a
          ;
          (2)
          a
          0
          ,
          1
          8
          ]
          ;
          (3)(-∞,-2]∪{0}∪[2,+∞).
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/9/14 0:0:8組卷:34難度:0.5
          相似題
          • 1.把符號
            a
            amp
            ;
            b
            c
            amp
            ;
            d
            稱為二階行列式,規定它的運算法則為
            a
            amp
            ;
            b
            c
            amp
            ;
            d
            =
            ad
            -
            bc
            .已知函數
            f
            θ
            =
            cosθ
            amp
            ;
            1
            -
            λsinθ
            2
            amp
            ;
            cosθ

            (1)若
            λ
            =
            1
            2
            ,θ∈R,求f(θ)的值域;
            (2)函數
            g
            x
            =
            x
            2
            amp
            ;
            -
            1
            1
            amp
            ;
            1
            x
            2
            +
            1
            ,若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數λ的取值范圍.

            發布:2024/12/29 10:30:1組卷:14引用:6難度:0.5
          • 2.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
            aln
            x
            2
            x
            1
            -
            2
            x
            2
            -
            x
            1
            0
            成立,則實數a的取值范圍是

            發布:2024/12/29 7:30:2組卷:64引用:3難度:0.6
          • 3.設函數f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數x0,使得f(x0)<0,則a的取值范圍是

            發布:2024/12/29 5:0:1組卷:556引用:39難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正