試卷征集
          加入會員
          操作視頻

          已知拋物線y=mx2-(1-4m)x+c過點(1,a),(-1,a),(0,-1).
          (1)求該拋物線的解析式;
          (2)已知過原點的直線與該拋物線交于A,B兩點(點A在點B右側),該拋物線的頂點為C,連接AC,BC,點D在點A,C之間的拋物線上運動(不與點A,C重合).當點A的橫坐標是4時,若△ABC的面積與△ABD的面積相等,求點D的坐標;
          (3)若直線與拋物線有且只有一個公共點,且與拋物線的對稱軸不平行,則稱該直線與拋物線相切.已知點F的坐標是(0,1),過該拋物線上的任意一點(除頂點外)作該拋物線的切線l,分別交直線y=1和y=-3直線于點P,Q,求FP2-FQ2的值.

          【考點】二次函數綜合題
          【答案】(1)拋物線的解析式是
          y
          =
          1
          4
          x
          2
          -
          1

          (2)點D的坐標是
          3
          5
          4

          (3)-8.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/7/3 8:0:9組卷:1368引用:3難度:0.1
          相似題
          • 1.拋物線y=ax2-4ax-12a(a≠0)與x軸交于A、B兩點(點A在點B的左側),頂點為C.以點C為旋轉中心,將點B順時針旋轉90°得到點D.
            (1)直接寫出點C的坐標為
            .(用含a的式子表示)
            (2)試說明點A為位置不變的定點,并求出點A的坐標.
            (3)當∠ABC=30°時,求點D的坐標.
            (4)當點D在第三象限時,直接寫出a的取值范圍.

            發布:2025/5/26 4:0:1組卷:147引用:1難度:0.1
          • 2.如圖,已知二次函數y=ax2+bx的圖象經過點A(4,0),B(1,3),點B關于拋物線對稱軸的對稱點為點C,過點B作直線BM⊥x軸,垂足為點M.
            (1)求二次函數的表達式并直接寫出點C的坐標;
            (2)點P是直線BM右側拋物線上一點,若△ABP的面積是6.
            ①直接寫出點P到直線AB的距離;
            ②求點P的坐標;
            (3)點G在x軸上,點H在直線BM上,當以C,G,H為頂點的三角形是等腰直角三角形時,此時△CGH的面積是

            發布:2025/5/26 4:0:1組卷:54引用:1難度:0.3
          • 3.已知拋物線y=ax2-(3a-1)x-2(a為常數且a≠0)與y軸交于點A.
            (1)點A的坐標為
            ;對稱軸為
            (用含a的代數式表示);
            (2)無論a取何值,拋物線都過定點B(與點A不重合),則點B的坐標為

            (3)若a<0,且自變量x滿足-1≤x≤3時,圖象最高點的縱坐標為2,求拋物線的表達式;
            (4)將點A與點B之間的函數圖象記作圖象M(包含點A、B),若將M在直線y=-2下方的部分保持不變,上方的部分沿直線y=-2進行翻折,可以得到新的函數圖象M1,若圖象M1上僅存在兩個點到直線y=-6的距離為2,求a的值.

            發布:2025/5/26 4:30:1組卷:504引用:3難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正