在平面直角坐標系中,拋物線y=-x2+2x+b(b為常數,b≠0)與y軸交于點A,且點A的坐標為(0,3),過點A作垂直于y軸的直線l.P是該拋物線上的任意一點,其橫坐標為m,過點P作PQ⊥l于點Q,M是直線l上的一點,其橫坐標為-m+1.以PQ,QM為邊作矩形PQMN.
(1)求b的值;
(2)當點Q與點M重合時,求m的值;
(3)當矩形PQMN為正方形時,求m的值;
(4)當拋物線在矩形PQMN內的部分所對應的函數值y隨x的增大而增大時,直接寫出m的取值范圍.
【考點】二次函數綜合題.
【答案】(1)b=3;
(2)m=.
(3)m=1或m=-1或m=2+或m=2-.
(4)-1≤m<0或<m<2.
(2)m=
1
2
(3)m=1或m=-1或m=2+
3
3
(4)-1≤m<0或
1
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:339引用:3難度:0.2
相似題
-
1.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44引用:1難度:0.1 -
2.在平面直角坐標系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
(1)求拋物線的解析式;
(2)當點F在第一象限運動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當S取最大值時,求點F的坐標;
(3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標.發布:2025/5/23 3:0:1組卷:458引用:3難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經過B、C兩點,與x軸的另一個交點為A.
(1)如圖1,求b、c的值;
(2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設點P的橫坐標為t,△ADC的面積為S,求S與t的函數關系式;
(3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為,求E點坐標.54發布:2025/5/23 3:0:1組卷:205引用:1難度:0.1
相關試卷