閱讀材料:我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式.如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當的項,使式子中出現完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數學方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負數有關的問題或求代數式的最大值,最小值等.例分解因式:x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);又例如:求代數式2x2+4x-6的最小值:∵2x2+4x-6=2(x2+2x-3)=2(x+1)2-8;又∵(x+1)2≥0;∴當x=-1時,2x2+4x-6有最小值,最小值是-8.
根據閱讀材料,利用“配方法”,解決下列問題:
(1)分解因式:a2-4a-5=(a+1)(a-5)(a+1)(a-5);
(2)已知△ABC的三邊長a、b、c都是正整數,且滿足a2-4a+b2-12b+40=0求邊長c的最小值;
(3)當x、y為何值時,多項式-x2+2xy-2y2+6y+7有最大值?并求出這個最大值.
【答案】(a+1)(a-5)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:513引用:2難度:0.5
相似題
-
1.已知a,b為直角三角形ABC的兩直角邊,△ABC的周長為18,斜邊為8,面積為5.5,則代數式a2-ab+b2的值是( )
A.89 B.-89 C.67 D.-67 發布:2025/6/6 5:0:1組卷:30引用:1難度:0.7 -
2.閱讀下列材料:
材料1:在處理分數和分式問題時,有時由于分子比分母大,或者分子的次數高于分母的次數,在實際運算時往往難度比較大,這時我們可以將假分數(分式)拆分成一個整數(整式)與一個真分數(式)的和(差)的形式,通過對簡單式的分析來解決問題,我們稱之為分離整數法.此法在處理分式或整除問題時頗為有效.如將分式拆分成一個整式與一個分式(分子為整數)的和的形式.x2-3x-1x+2
解:設x+2=t,則x=t-2.∴原式=(t-2)2-3(t-2)-1t=t-7+t2-7t+9t9t
∴=x-5+x2-3x-1x+29x+2
材料2:配方法是初中數學思想方法中的一種重要的解題方法,配方法最終的目的就是配成完全平方式,利用完全平方式來求解,它的應用非常廣泛,在解方程、求最值、證明等式、化簡根式、因式分解等方面都經常用到.如:當a>0,b>0時,∵+ab=(ba)2+(ab)2=(ba-ab)2+2ba
∴當=ab,即a=b時,ba+ab有最小值2.ba
根據以上閱讀材料回答下列問題:
(1)將分式拆分成一個整式與一個分子為整數的分式的和的形式,則結果為 ;x2+x+3x+1
(2)已知分式的值為整數,求整數x的值;4x2-10x+82x-1
(3)當-1<x<1時,求代數式的最大值及此時x的值.-12x4+14x2-5-2x2+2發布:2025/6/6 4:30:1組卷:387引用:4難度:0.4 -
3.三角形的三邊長為(a+b)2=c2+2ab,則這個三角形是( )
A.等邊三角形 B.直角三角形 C.鈍角三角形 D.銳角三角形 發布:2025/6/6 10:0:1組卷:43引用:2難度:0.7