雙曲線的中心為原點O,焦點在x軸上,兩條漸近線分別為l1,l2,經過右焦點F垂直于l1的直線分別交l1,l2于A,B兩點.已知|OA|、|AB|、|OB|成等差數列,且BF與FA同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設AB被雙曲線所截得的線段的長為4,求雙曲線的方程.
OA
AB
OB
BF
FA
【考點】求雙曲線的離心率.
【答案】(1);
(2)雙曲線方程為:-=1.
e
=
5
2
(2)雙曲線方程為:
x
2
36
y
2
9
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:2579引用:11難度:0.5
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點,P為x2+y2=c2與雙曲線C1的交點,且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( ?。?/h2>13A. 102B. 173C. 2D. 3發布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.設a>1,則雙曲線
的離心率e的取值范圍是( ?。?/h2>x2a2-y2(a+1)2=1A. (2,2)B. (2,5)C.(2,5) D. (2,5)發布:2024/12/29 0:0:2組卷:849引用:18難度:0.7 -
3.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( ?。?/h2>32A. 32B. 52C.2 D. 72發布:2025/1/5 18:30:5組卷:228引用:3難度:0.7